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SUMMARY

Translation of consecutive proline motifs causes
ribosome stalling and requires rescue via the action
of a specific translation elongation factor, EF-P in
bacteria and archaeal/eukaryotic a/elF5A. In Eu-
karya, Archaea, and all bacteria investigated so far,
the functionality of this translation elongation factor
depends on specific and rather unusual post-transla-
tional modifications. The phylum Actinobacteria,
which includes the genera Corynebacterium, Myco-
bacterium, and Streptomyces, is of both medical
and economic significance. Here, we report that
EF-P is required in these bacteria in particular for
the translation of proteins involved in amino acid
and secondary metabolite production. Notably,
EF-P of Actinobacteria species does not need any
post-translational modification for activation. While
the function and overall 3D structure of this EF-P
type is conserved, the loop containing the conserved
lysine is flanked by two essential prolines that rigidify
it. Actinobacteria’s EF-P represents a unique sub-
family that works without any modification.

INTRODUCTION

The incorporation of proline induces sharp turns and perturbs
secondary structure in proteins, due to the unique conforma-
tional rigidity of the pyrrolidine ring (Doerfel et al., 2015; Vanhoof
et al., 1995; Venkatachalam and Ramachandran, 1969). Proline-
rich regions, including motifs containing consecutive prolines
(XPPX), are often found in sites of protein-protein and protein-
nucleic acid interaction (Adzhubei et al., 2013; Qi et al., 2018;
Vanhoof et al., 1995). XPPX motifs are important in enzymes
but might also play a regulatory role in copy number adjustment,

4332 Cell Reports 30, 4332-4342, March 31, 2020 © 2020 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

as well as in protein folding and membrane insertion (Motz and
Jung, 2018; Qi et al., 2018; Starosta et al., 2014b; Ude et al.,
2013). The incorporation of polyproline motifs into proteins is
challenging for ribosomes, and often leads to peptidyl-tRNA
destabilization and detachment of the nascent chain, culmi-
nating in translational stalling and decreased protein levels
(Doerfel et al., 2013; Huter et al., 2017; Peil et al., 2013; Ude
et al., 2013). To overcome this translational burden, bacteria
have evolved elongation factor P (EF-P) (Doerfel et al., 2013;
Ude et al., 2013). Evidence that EF-P facilitates peptide bond
formation when the ribosome encounters consecutive prolines
is based on structural studies (Blaha et al., 2009; Huter et al.,
2017), various in vivo translation-based reporter systems (Raj-
kovic et al.,, 2016; Ude et al, 2013), biochemical kinetic
experiments (Doerfel et al., 2013), and ribosome profiling, which
delineated a hierarchy of pausing motifs (Elgamal et al., 2014;
Woolstenhulme et al., 2015). This protein, like its eukaryotic
and archaeal orthologs elF5A/alF5A, binds to the ribosome be-
tween the P- and E-sites, projecting a conserved residue
toward the ribosomal peptidyl-transferase center (PTC) and
stimulating formation of the Pro-Pro bond (Doerfel et al., 2013;
Gutierrez et al., 2013; Melnikov et al., 2016; Ude et al., 2013; Van-
hoof et al., 1995). Binding of EF-P to the ribosome is required to
stabilize the P-site tRNA, thereby enforcing a conformation of the
polyproline-containing nascent chain that provides a favorable
substrate geometry for peptide-bond formation (Huter et al.,
2017).

In all organisms tested thus far, EF-P and its elF5A/alF5A or-
thologs require for their activation a post-translational modifica-
tion (PTM) at a conserved amino acid residue located at the tip of
aloop (Cooper et al., 1983; Navarre et al., 2010; Park et al., 1981;
Peil et al., 2012; Yanagisawa et al., 2010). This modification ex-
tends the side chain of a conserved lysine or arginine (Huter
et al., 2017). Whereas eukaryotes and archaea evolved a unique
PTM, the hypusinyl side chain, to activate elF5A/alF5A (Cooper
et al., 1983; Park et al., 1981), bacteria use diverse and unusual
substrates and enzymes to activate their EF-Ps (Figure 1A).
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Figure 1. Phylogenetic Tree of the Bacterial
EF-Ps and the Known PTMs

(A) Known bacterial EF-P subfamilies and their
various post-translational modifications (PTMs).
(B) Phylogenic tree of bacterial EF-Ps. Dots high-
light the distribution of enzymes required for the
modification of EF-Ps: note the co-occurrence of
EpmA and EpmB (green), EarP (purple), and Ymfi
(blue). The Actinobacteria EF-P subfamily is
marked in yellow. Bacterial species in which some
features of EF-P function were previously studied
are indicated.

(C) Total number and frequency of polyproline
motifs (XPPX) classified according to their stalling
strengths in different species of Actinobacteria.
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Bifidobacterium longum NCC2705 UP000000439 1725 382 225 221 0.48 Ude et al., 2018), decreased pathogenicity
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Nocardia farcinica IFM10152 UP000006820 5941 2583 1365

A phylogenetic tree of EF-P was constructed, and the
various types of EF-P modifications were inferred from the
PTM enzymes encoded by each organism (Figure 1B; Table
S1). y-Proteobacteria, including Escherichia coli, Salmonella en-
terica, and 29% of all other reference genomes encode the modi-
fication enzymes EF-P-(R)- B-lysine ligase EpmA (Roy et al.,
2011; Yanagisawa et al., 2010) and c-lysine 2,3-aminomutase
EpmB (Yanagisawa et al., 2010) to B-lysinylate EF-P. Only 13%
of these bacteria co-encode the EF-P hydroxylase EpmC
responsible for the last step in this modification. However, the
hydroxyl group added by this enzyme was shown to have a negli-
gible effect on EF-P activity in E. coli (Peil et al., 2012, 2013).
Another EF-P subfamily is found in B-proteobacteria and some
y-proteobacteria (9% of all bacteria), in which lysine is replaced
by arginine and the latter undergoes rhamnosylation catalyzed

https://reader.elsevier.com/reader/sd/pii/S2211124720303089?token=CF012C268839CDO9FBB9CC4BC60164B80DCOA8BF6D564E7163F9C18. ..

sawa et al., 2016).

The remaining 57% of bacterial ge-
nomes do not encode any known EF-P
modification enzyme. Among them, the cluster formed by Acti-
nobacteria EF-P represents 11% of all bacterial genomes (Fig-
ure 1B). This cluster comprises EF-P sequences with an average
sequence identity of 68.1%, which implies that they share the
same EF-P activation pathway.

Actinobacteria constitutes one of the largest phyla among
bacteria and comprises Gram-positive bacteria with a high
G+C DNA content. The divergence of Actinobacteria from other
bacteria is ancient, making it impossible to identify the phyloge-
netically closest bacterial group. Furthermore, members of the
Actinobacteria have adopted different lifestyles. Some are path-
ogens (e.g., Corynebacterium, Mycobacterium), others soil in-
habitants (Streptomyces), plant commensals (Leifsonia), or
gastrointestinal commensals (Bifidobacterium) (Ventura et al.,
2007). Mycobacterium, Streptomyces, and Corynebacterium
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are of medical and industrial importance. Here, we examine
various species of Actinobacteria, specifically C. glutamicum,
S. coelicolor, and M. tuberculosis, and report a new EF-P sub-
family that differs from all others in that it alleviates ribosome
stalling at polyproline motifs without needing any activating
PTM.

RESULTS

Bioinformatics and Functional Importance of EF-P in
Actinobacteria

EF-P is not only important for the translation of polyproline-
containing proteins, but also for synthesis of specific subsets
of proteins containing diprolyl motifs (X/PP/X) (Peil et al., 2013;
Qi et al., 2018). There is a distinct hierarchy of stalling motifs,
ranging from strong stallers, such as PPP, D/PP/D, PPW, APP,
G/PP/G, and PPN, to weak stallers, such as CPP, L/PP/L, and
HPP (Elgamal et al., 2014; Hersch et al., 2013; Peil et al., 2013;
Starosta et al., 2014a; Woolstenhulme et al., 2015).

Strength and number of XPPX motifs in a proteome indicate
how important EF-P activity is for the individual bacterial
species. Previous studies have investigated the PTM status of
EF-P primarily in three species: E. coli, S. oneidensis, and
B. subtilis. Of these, E. coli is the one with most XPPX motifs.
In total, 2,101 XPPX motifs are present in its proteome, corre-
sponding to 0.49 per protein encoded (Qi et al., 2018).
S. oneidensis and B. subtilis encode 0.38 and 0.28 motifs per
protein, respectively (Table S2). We determined the numbers
of XPPX motifs in the most relevant Actinobacteria and identified
strikingly large numbers of them (Figure 1C). In M. tuberculosis,
S. coelicolor, and Nocardia farcinica, the number of polyproline
motifs actually exceeds the number of encoded proteins
(Figure 1C).

Besides the control by EF-P, the relative amount of an XPPX-
containing protein synthesized depends on the rate of transla-
tional initiation and the location of the stalling motif(s) it contains
(Ude et al., 2013; Woolstenhulme et al., 2015). In addition, tran-
scriptional regulators may contain XPPX motifs, so that levels of
proteins that lack stalling motifs could still be indirectly
controlled by EF-P. Therefore, to assess the global effect of
EF-P on the proteome of a well-investigated member of Actino-
bacteria, we constructed a Aefp mutant of C. glutamicum
ATCC13032 and compared its proteome to that of the parental
strain. The analysis of four independent replicates covered
1,604 out of 3,093 proteins described for the reference strain.
In all, 222 proteins were downregulated (p value < 0.05; Table
S3). As expected, the most markedly downregulated proteins
contain XPPX motifs in their sequences (Figure 2A). The overall
intensity of proteins containing polyproline motifs was reduced
as well (Figure 2B, in blue), and proteins containing strong stall-
ing XPPX motifs have the lowest relative intensity among them
(indicated in yellow in Figure 2B).

Functional classification of the downregulated proteins
revealed seven groups of proteins that were significantly over-
represented (Figure 2C). Among them are enzymes associated
with the biosynthesis of amino acids, antibiotics, and other
secondary metabolites. This underlines the role of EF-P in the
production of these compounds in Actinobacteria.

4334 Cell Reports 30, 4332-4342, March 31, 2020
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The evolution of the EF-P and elF5A/alF5A ribosome rescue
system is linked to an invariant proline triplet motif located in
the active site of Valine-tRNA synthetase (ValS), which is found
in all domains of life (Starosta et al., 2014b). In C. glutamicum,
as well as in E. coli, ValS is one of the proteins most drastically
downregulated when efp is deleted. Cgl1117 is a predicted
glycosyltransferase that is homologous to the E. coli glycogen
synthase GIgA and includes two strong XPPX motifs. It was
found to be the most strongly downregulated protein in our
proteomic analysis with a 15.4-fold reduction in its steady-state
level relative to the efp™ strain (Figure 2A; Table S3). This result of
the mass spectrometry (MS) analysis was confirmed by testing
the level of the chromosomally encoded Cgl1117-eGFP fusion
protein in the efp mutant (Figure 2D). Overall, the impact in the
downregulation of proteins containing XPPX motifs observed
here is fully compatible with previous proteomic analyses of
E. coli and other bacterial species lacking efp or one of its
post-translational modification enzymes (Hersch et al., 2013;
Peil et al., 2013).

EF-P Activity Depends on a Positively Charged Amino
Acid at Position 32

The effect of EF-P on the C. glutamicum proteome led us to
investigate the nature of the post-translational modification
that might activate this elongation factor. We generated two re-
porter genes coding for the enhanced green fluorescent protein
(eGFP), one with the strong stalling motif RPPP and another with
the non-staling sequence RPAP upstream of the eGFP
sequence. Both genes were integrated chromosomally under
the control of a constitutive promoter, and their expression
was tested in efp” and efp C. glutamicum cells. While the
RPAP-eGFP variant was synthesized efficiently in both strains,
RPPP-eGFP was barely detectable in the efo™ mutant, revealing
its strong dependence on EF-P, and the fluorescence intensity of
these cells was only slightly higher than the background level
(Figures 3A and 3B).

EF-P in C. glutamicum has a lysine (K32) at the tip of the
loop, which in other organisms is known to undergo post-trans-
lational modification (see above). In order to determine whether
K32 is important for EF-P activity, we constructed several EF-P
variants to alter the properties of the amino acid at this position.
Strains expressing various substitutions at this position (K32A,
K32E, K32M, K32Q) were virtually unable to support RPPP-
eGFP translation. Surprisingly, the EF-P**2® variant enhanced
RPPP-eGFP production to almost the same degree as the
wild type (Figure 3C). Replacement of the lysine by arginine
preserves the positively charged side chain of the amino
acid, but nevertheless abolishes post-translational modifica-
tion. While the EF-PX®2" variant is completely inactive in
E. coli (Figure S1A), the unmodified EF-P*32® variant retains
substantial activity (e.g., swarming phenotype) in Bacillus sub-
tilis (Hummels et al., 2017).

EF-P in C. glutamicum lIs Not Post-translationally
Modified

The high activity of the EF-P**?" variant prompted us to ask
whether C. glutamicum EF-P (EF-Pg) actually requires post-
translational modification for activation. To facilitate purification
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Figure 2. Proteomic Analysis of C. glutamicum
Aefp Strain

(A) Heatmap representation of the 25 most severely
downregulated proteins in the Aefp mutant relative to
the C. glutamicum wild type. The fold changes in the
four independent replicates are represented by the
color gradient in red (upregulation) and blue (down-
regulation). Proteins marked in yellow contain poly-
proline motifs. EF-P itself as the most markedly
downregulated protein is not shown on the heatmap
but is highlighted on Table S3.

(B) Scatter-plot of protein fold-change ratio (logs-
transformed) relative to the summed protein intensity
of all biological replicates of the Aefp strain, including
density plots showing the distribution of proteins with
strong stalling XPPX motifs (yellow) relative to all
XPPX-containing proteins (blue) and all proteins
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(C) Clustering of downregulated proteins according to
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the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathway Database. The blue segments
represent the numbers of proteins containing XPPX
motifs. Statistical significance was addressed with
Fisher exact test, non-marked columns p < 0.05; *p <
0.01; **p < 0.0001.
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(D) Distribution of relative fluorescence signals
from 300 C. glutamicum cgl1117-egfp cells inefp™ and
efp” strains. The dashed lines mark the background
fluorescence. Production of EF-P was confirmed by
western blot analysis.

Biosynthesis of amino acids & 172%
Biosynthesis of antibiotics 20 the peptides was modified (Figure 4B).
Bioeiiihisas Groscantaly mkagoltes - Moreover, there was no difference in iso-
Prifiiafy:mBtabalista N n ¥ =S electric point between endogenous and
Number:?doﬁregi?ated lﬁl heterologous EF-Pcy (_Figure 4C). We there-
proteins <9 @ fore conclude that neither the endogenous

of EF-Pgg, we expressed a C-terminally 6xHis-tagged EF-P
variant (connected to the protein by a short Arg-Ser linker)
from the endogenous locus under the control of the native pro-
moter. The tag had no effect on EF-P activity (Figure S1B). This
strategy allowed us to express and isolate native levels of EF-
P¢g, thus circumventing possible problems caused by low activ-
ity of PTM enzymes or substrate limitation triggered by protein
overexpression.

A post-translational modification alters the mass and
frequently the charge of a given protein (Deribe et al., 2010;
Lakemeyer et al., 2019). To investigate the nature of PTM of
C. glutamicum’s EF-P, we purified the His-tagged variant. In
addition, we heterologously expressed this same gene in the
Aefp AepmA E. coli mutant, expecting that the resulting prod-
uct would not be modified in this bacterium. Both proteins were
then analyzed by mass spectrometry. The intact protein mass
matched the calculated mass, irrespective of whether EF-Pgg
was isolated from C. glutamicum (Figure 4A, from mid-log
growth phase; see Figure S2A for stationary growth phase) or
from the transformed E. coli mutant (Figure S2). Liquid chroma-
tography-tandem mass spectrometry (LC-MS/MS) analysis of
the trypsin-digested endogenous EF-P confirmed that none of

nor the recombinantly produced protein un-
dergoes PTM.

Subsequently, EF-P variants in which the conserved lysine at
position 32 was replaced by alanine (K32A) or arginine (K32R)
were also analyzed by mass spectrometry and isoelectric
focusing (Figures 4C and S2). These variants exhibited only the
expected shifts in mass and isoelectric point (IEP).

Crystal Structure of Actinobacteria EF-P

In order to gain insights into the structural configuration of this
Actinobacteria EF-P, we isolated and crystallized the endoge-
nous protein from C. glutamicum ATCC13032 and determined
its X-ray crystal structure to 2.2-A resolution (for data process-
ing and structure refinement statistics, see Table S4). EF-Pgq
shares its overall folding topology with the previously reported
bacterial EF-P structures and consists of three B-barrel do-
mains (domains |, I, and Ill) with an overall L shape reminiscent
of a tRNA (Hanawa-Suetsugu et al., 2004). The EF-P structure
can be superimposed on homologous EF-P structures with a
root-mean-square deviation (RMSD) ranging from 1.9 to 3 A
(Figure 5A). The loop connecting B2 and B3 in the N-terminal
domain |, which in other EF-P proteins carries the post-trans-
lational modification on either a lysine or arginine residue, is
fully defined in the electron-density map. The side chain of
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Figure 3. EF-P Enhances the Translation of Proteins Containing
Polyproline Motifs

(A) Single-cell fluorescence microscopy of C. glutamicum reporters producing
RPPP-eGFP in efp” and efp™ strains. Pictures were taken with a 500-ms
exposure time.

(B) Distribution of relative eGFP fluorescence signals obtained from a minimum
of 300 C. glutamicum cells expressing RPAP-eGFP and RPPP-eGFP,
respectively, in efo™ and efpp~ strains. The dashed line marks the background
level of fluorescence. Western blots reveal levels of expression of
C. glutamicum EF-P.

(C) Synthesis of RPPP-eGFP in C. glutamicum strains expressing EF-P vari-
ants with the indicated amino acid replacements at position 32. Relative
fluorescence units (RFUs) are shown. The dashed line corresponds to back-
ground fluorescence. The area shown in gray marks the range of fluorescence
measured in the negative control (—efp). Strain expressing C. glutamicum
EF-P (+ efp) and negative control as shown in (B).

Lys32 is not discernible and must therefore be flexible
(Figure 5B).

Crystal and cryo-EM structures of the T. thermophilus and
E. coli EF-Ps in complex with the ribosome show that EF-P binds
at the ribosomal E-site, with its domain | located next to the
acceptor stem of the P-site tRNA. The loop connecting p2 to
B3 interacts with the acceptor arm of P-site tRNA. Domain il
of EF-P binds adjacent to the anticodon stem-loop of the
P-site tRNA, while domain Il of EF-P interacts with the highly

4336 Cell Reports 30, 4332-4342, March 31, 2020
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conserved ribosomal protein L1 (Blaha et al.,, 2009; Huter
et al,, 2017). Thus, EF-P most likely acts indirectly on pep-
tide-bond formation either by stabilizing the initiator tRNA or
by enforcing an alternative conformation of the nascent poly-
proline-containing chain to provide a favorable substrate
geometry (Blaha et al., 2009; Huter et al., 2017). In the E. coli
EF-P-ribosome complex, the modified Lys34, an ¢(R)-B-lysylhy-
droxylysinyl residue, directly interacts with the CCA end of the
P-site tRNA (Huter et al.,, 2017). Alignment of 150 different
bacterial EF-P protein sequences reveals strong conservation
of domains | and Ill, which interact with the tRNA and rBNA.
Overall, domain lll appears to be less conserved. However,
the region that makes contact with the ribosomal L1 protein
in the E. coli EF-P-ribosome complex also shows seqguence
conservation (Figure 5).

P30 and P34 Are Essential for EF-P Activity

in Actinobacteria

Although the sequence of domain | in EF-P is highly conserved
across the bacterial kingdom, a striking difference, a loop with
the palindromic PGKGP motif, was identified in Actinobacteria
EF-Ps. P30 and P34 flank this palindromic EF-P loop sequence
that is found in 11% of all bacteria including all EF-P sequences
from Corynebacterium, Streptomyces, Mycobacterium, Bifido-
bacterium, Gardnerella, Mobiluncus, and Norcardia (Figures
6B, S4, and S5).

P30 was previously identified as an invariant proline in all
EF-Ps with a lysine at the tip of the loop in a phylogenetic anal-
ysis, and other amino acids replace proline when arginine is at
the tip (Volkwein et al., 2019) (Figure S3E). The exchange of
P30 for alanine or glutamine in EF-P of C. glutamicum led to
non-functional variants (Figure 6A).

The second proline of the palindromic motif is only present
in the subgroup of Actinobacteria described here. Glutamine
and alanine are frequently found at this position in EF-P pro-
teins in bacterial species encoding genes of known EF-P
modification enzymes (Figure S3E). Some actinobacterial
EF-P sequences have glycine or asparagine at position 34
(Figures S3D and S4). To determine the significance of P34
for C. glutamicum EF-P, we replaced this amino acid with
alanine (B. subtilis EF-P has A34), glutamine (E. coli EF-P
has Q34), glycine, and asparagine, and quantified the EF-P ac-
tivity of the resulting variants (Figure 6A). All resulting EF-P
variants were not able to support RPPP-eGFP translation in
C. glutamicum (Figure 6A).

The two prolines in the consensus sequence most likely
rigidify the loop, which in turn could enable these EF-Ps to sta-
bilize the acceptor arm of the tRNA and thus allow translation
of polyproline motifs without post-translational modification.
Apart from this motif, no other sequence signature was iden-
tified in our structural and amino acid sequence analyses of
unmodified EF-Ps (Figures 5 and S4). The palindromic loop
sequence PGKGP is an essential feature of the new EF-P sub-
family described here.

A Novel Subfamily of EF-P in Actinobacteria
EF-P protein sequences are highly conserved among the most
relevant Actinobacteria (Figure 6B). We used the same
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reporter setup described in Figure 3 to test whether EF-P
proteins from other members of the Actinobacteria are
able to complement the Aefp C. glutamicum mutant. EF-Ps
from Mycobacterium smegmatis, M. phlei, M. tuberculosis,
Streptomyces coelicolor, S. venezuelae, and S. californicus,
significantly enhanced translation of RPPP-eGFP in
C. glutamicum (Figure 6C). EF-P production was confirmed
by western blot analysis (Figure 6C). In contrast, EF-Ps from
Actinobacteria were unable to complement a Aefp AepmA
E. coli mutant (Figure S5), which supports the hypothesis
that actinobacterial EF-Ps constitute a separate subfamily of
these elongation factors.

. glutamicum
. baumannii

conservation 0%

26}0 400 600 800 10001200 MO(HSbO
m/z miz

(C) Western blot of an isoelectric focusing gel
loaded with C. glutamicum EF-P isolated from its
native host (WT), after heterologous expression in
E. coli Aefp AepmA (REC), and after replacement of
lysine 32 by alanine (K32A) or arginine (K32R).

The endogenous efp genes in

S. coelicolor and M. smegmatis were

tagged as described for C. glutamicum.

Endogenous His-tagged EF-Pg. and

EF-Pus proteins were then purified and compared to a recom-
binant variant produced in the Aefp AepmA E. coli strain. In
both cases, the intact protein mass measured by mass spec-
trometry matched the calculated for unmodified EF-P (Figures
7A and 7B). After digestion with chymotrypsin, LC-MS/MS
analysis found all peptides comprising the loop region to be
unmodified (Figures S6A-S6F). Isoelectric focusing showed
no changes in protein charge between endogenous and heter-
ologously produced versions of the proteins (Figures 7C and
7D). Last, unmodified EF-P could also be identified in lysates
of Mycobacterium tuberculosis H37Rv (Figure 7E) and
M. smegmatis (Figure S6G). Our results therefore confirm

Figure 5. Crystal Structure of C. glutamicum
EF-P

(A) Structural superposition and ribbon represen-
tations of available EF-P structures. C. glutamicum
(PDB: 6S8Z, orange, this work), Acinetobacter
baumannii (PDB: 5J3B, blue), E. coli (PDB: 3A5Z,
gray), Pseudomonas aeruginosa (PDB: 30YY,
green), and Coxiella burnetii (PDB: 3TRE, purple)
are shown. The Arg or Lys residue at the tip of the
loop between B2 and B3 of the N-domain is shown
as a stick model.

(B) Simulated-annealing omit electron density map
contoured at 2.5¢ of the connecting loop between
B3 and B4 in the N-terminal domain of C. giuta-
micum EF-P.

(C) Sequence conservation across EF-P proteins
mapped onto the surface of C. glutamicum EF-P
using CONSURF (blue, conserved; orange, not
conserved). Homologs were identified by BLAST
search (Altschul et al., 1990) using the EF-P protein
sequence against the translated nucleic acid se-
quences in the National Center of Biotechnological
Information (NCBI) database (hitps://blast.ncbi.
nim.nih.gov/Blast.cgi).
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Figure 6. EF-P Conserved Prolines at Position 30 and 34 Are Essential for EF-P Activity

(A) Relative fluorescence units (RFUs) of C. glutamicum strains producing RPPP-eGFP and EF-PCg variants with the indicated amino acid replacements at
positions 30 and 34. The dashed line indicates the background fluorescence level.

(B) Alignment of EF-P amino acid sequences of different actinobacterial species. Identical amino acids are highlighted in red, conserved K32 in green, and P30

and P34 in blue.

(C) Synthesis of RPPP-eGFP (expressed as RFU) in C. glutamicum strains expressing the efp genes from the actinobacterial species indicated below the bars.
The dashed gray line corresponds to background fluorescence. Statistical significance was tested by unpaired, two-tailed t tests with 99% confidence intervals,

"p < 0.0001.

that an unmodified EF-P is active in the most relevant genera
of Actinobacteria, including bacteria such as S. coelicolor,
M. smegmatis, and M. tuberculosis whose proteomes are
among those richest in XPPX motifs.

DISCUSSION

Actinobacteria such as C. glutamicum and S. coelicolor are
important for the industrial production of amino acids, pep-
tides, and other secondary metabolites. Proteomic analysis of
the Aefp C. glutamicum mutant reveals downregulation of
222 proteins, most of which contain XPPX motifs as expected.
Moreover, this set is not a random sample of the proteome but
is enriched in proteins involved in primary metabolism, and the
biosynthesis of amino acids, antibiotics, and secondary metab-
olites. Bottlenecks in these pathways must be avoided during
industrial-scale production, and EF-P might play an important
role in this context, e.g., when upscaling production of metab-
olites by these organisms. Comparable proteome analyses of
other EF-P/elF-5A-depleted organisms revealed a predominant
importance of EF-P for transcription and translation factors in
E. coli (Starosta et al., 2014a), and for endoplasmic reticulum

4338 Cell Reports 30, 4332-4342, March 31, 2020

stress, and protein folding in HelLa cells (Mandal et al., 2016).
These data are in accordance with the idea that EF-P and
a/elF-5A originally evolved to facilitate translation of ValS, the
Val-tRNA synthetase with an invariant proline triplet in all king-
doms (Starosta et al., 2014b), but then independently adapted
to the specific needs of groups of Bacteria, Archaea, and
Eukarya.

Bacteria have evolved various modification mechanisms to
activate EF-P. Synthesis and attachment of the specific
post-translational modifications generate a functional elonga-
tion factor, but at a fitness cost. Here, we report on a novel
EF-P subfamily in Actinobacteria that does not require any
PTM for activation. The structure of this EF-P subclass was
obtained by crystallizing the endogenously produced EF-
Pcg- The three B-barrel domains, which together form an L
shape, retain all the residues required for interactions with
rBNA, tRNAs, and the L1 protein, and cannot be distinguished
from other homologs in terms of its overall structure. The func-
tionally important Lys32 at the tip of the B-hairpin is encom-
passed by two prolines at positions 30 and 34. In subsequent
studies, we confirmed that these two prolines are essential for
EF-P function in C. glutamicum. Replacement of either of them
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Figure 7. Different Actinobacteria Do Not
Post-translationally Modify EF-P

(A-D) Deconvoluted MS spectra of intact endoge-
nous EF-P from S. coelicolor (EF-PSc) (A) and
M. smegmatis (EF-PMs) (B). Isoelectric focusing
(IEF) gel of recombinant (REC) and endogenous
EF-P (WT) isolated from S. coelicolor (C) and
M. smegmatis (D).

(E) Annotated MS/MS spectra of K32 containing
peptide of endogenous EF-P from M. tuberculosis.
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by alanine, asparagine, glycine, or glutamine (amino acids,
which are found in other EF-P subfamilies) results in an inac-
tive EF-P. Due to the high amino acid sequence and structure
conservation of EF-Ps, no other characteristic motif than the
palindromic loop sequence PGKGP could be identified as
unique for this new EF-P subfamily. The pyrrolidine ring of
the proline constrains the main chain dihedral angles of the
peptide chain and restricts the conformations of the neigh-
boring residues (MacArthur and Thornton, 1991; Schimmel
and Flory, 1968). This leads to a decrease in the conforma-
tional entropy and thus increase in rigidity of the B-hairpin.
For the modified Lys 34, an g(R)-B-lysylhydroxylysinyl residue,
it was shown that it directly interacts with the backbone of the
CCA end of the P-site tRNA (Huter et al., 2017). Here, it was
argued that this not only stabilizes the P-site tRNA but also
forces the prolines to adopt an alternative conformation and
thus optimal geometry between the nascent chain and the
aminoacyl-tRNA for peptide bond formation (Huter et al.,
2017).

Mechanistically, we could not exclude the hypothesis that
the conserved and unmodified Lys32 is able to reach further
into the ribosomal PTC in comparison to the other modified
EF-Ps. However, due to the overall structure identity and amino
acid sequence conservation around the loop region (Figures 5
and S4), we suggest that the B-hairpin rigidified by the palin-
dromic sequence Pro-Gly-Lys-Gly-Pro of this new subfamily
of EF-Ps is able to position the protruding Lys32 and stabilizes
the acceptor arm of the tRNA and facilitates XPPX translation in
the absence of a PTM. This hypothesis is supported by several
amino acid exchanges that did not shorten the loop but
increased flexibility resulting in inactivation of EF-P (Figure 6A).
This loop sequence is particularly found in EF-Ps of the Actino-
bacteria class (Figure S5), and it is definitely not present in EF-
Ps of bacteria that possess EF-P modification enzymes (Fig-
ure S4E). Sequences rich in Pro-Gly pairs are commonly found
in structural proteins, such as collagen, and confer rigidity and

10000

15000
m/z

20000

structural stability on these proteins
| 800 (Bella, 2016; Shoulders and Raines,
' s00 2009). As we have shown above, the

7 consensus loop sequence is not only
400 egsential for the functionality of this EF-
200 P subclass, it also enabled us to deter-

mine the structure of this protein with un-
precedented resolution.
Actinobacteria is a large and diverse
phylogenetic group, and we have identi-
fied the unmodified EF-P as the sole form in its most promi-
nent representatives, including species of Corynebacterium,
Streptomyces, and Mycobacterium. Moreover, using prolines
P30 and P34 as markers, we find this rigid loop in 11% of all
bacteria, which suggests that EF-P in other bacteria also
does not require a PTM for activation (Figures S4 and S7).
Specifically, these encompass other genera of the Actinobac-
teria, such as Bifidobacterium, Gardnerella, and Mobiluncus,
but also some Flavobacterium species belonging to the
phylum Bacteroidetes and representatives of the Proteobacte-
ria such as Campylobacter lari and C. hominis. Importantly,
none of these bacteria contains any known EF-P modification
enzyme.

Lys32 is a conserved residue at the tip of the loop in EF-Ps
of Archaea, Eukarya, and most Bacteria, and it is the site of
the activating PTM. In contrast to other homologs, the Lys32
of the actinobacterial subfamily of EF-Ps could be replaced
by arginine without major loss of function. Although this con-
firms that Actinobacteria EF-P is active without any PTM, a
positively charged amino acid side chain at position 32 is still
essential for activity. Similarly, in B. subtilis the unmodified
EF-P¥®2R but not the EF-P*®2” variant, has activity as it can
restore the swarming phenotype (Hummels et al., 2017).
These data reveal that EF-P with a positively charged amino
acid at the tip of the loop retains some activity in distinct
bacteria.

The fact that some bacteria have evolved a functional EF-P
that does not rely on any PTM for its activity is interesting
from both mechanistic and energetic points of view. Unicellu-
lar and free-living organisms, which often face nutrient li-
mitation and stress conditions, require fast translational
responses. Moreover, the burden of secondary metabolite
production involving the translation of many polyproline-con-
taining proteins may well be reduced by an EF-P that avoids
the energetic and metabolic costs associated with an essen-
tial activation step.
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iTOL version 3 Letunic and Bork, 2016 https://itol.embl.de/
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and integrated discovery (DAVID) version 6.7
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WeblLogo3 Crooks et al., 2004 http://weblogo.threeplusone.com/
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San Diego, California USA

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kirsten
Jung (jung@Imu.de). All unique reagents generated in this study are available from the Lead Contact with a completed Materials
Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All the bacterial strains used in this study are listed in Table S7. E. coli was grown in lysogeny broth (LB) under aerobic conditions
at 37°C. C. glutamicum was routinely grown in Brain-Heart Infusion (BHI) broth at 30°C unless indicated otherwise. S. coelicolor
was cultivated aerobically in SFM medium or tryptic soy broth (TSB) medium at 30°C. M. smegmatis was grown in BHI medium at
37°C. M. tuberculosis was cultivated in Middlebrook 7H9 medium supplemented with 10% oleic acid-albumin-dextrose-catalase,
0.05% tween 80 and 0.2% glycerol, incubated aerobically at 37°C and carried out under biosafety level 3 conditions (Reiling
et al., 2013). When necessary, antibiotics were used in the following concentrations: apramycin 50 ug/mL; chloramphenicol
10 ng/mL (S. coelicolor) or 34 pg/mL (E. coli); kanamycin 10 pg/mL (M. smegmatis), 25 pg/mL (C. glutamicum, E. coli) or
50 pg/mL (S. coelicolor).
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METHOD DETAILS

Bioinformatics

A set of fully sequenced prokaryotic genomes identified by Keilberg et al. (2012) and Lassak et al. (2015) had efp sequence(s) and its
known modification enzymes identified as following: efp - EF-P domain; epmA — tRNA-synt_2 without tRNA_anti-codon domain;
epmB - Radical_SAM domain containing protein within a distance of 4 coding regions from efp; epmC — DUF462 domain; earP —
DUF2331 domain and ymfl adh_short or adh_shortC2 domains as discribed previously (Hummels et al., 2017; Lassak et al.,
2015). EF-P sequences were obtained by retrieving the data against Uniprot database resulting in a set of 937 sequences. Multiple
sequence alignments were constructed using the I-ins-1 algorithm implemented in the MAFF software package version 7.409 (Katoh
et al., 2019). Phylogenetic trees were constructed using FastTree 2.1 with default settings (Price et al., 2010). Annotations and man-
agement of phylogenetic trees were done with iTOL version 3 (Letunic and Bork, 2016). To search for polyproline motifs, reference
proteomes for each selected strain were downloaded from UniProt (UniProt Consortium, 2019). Motifs search was done using the
program CLC Main Workbench v. 7.7.3 and characterized as weak, moderate or strong according to Qi et al. (2018).

Nucleotides, plasmids, and bacterial strains construction

Primers, plasmids and strains used in this study are listed in Tables S5-57. Enzymes and kits were used according to the manufac-
turers’ standard protocols. Genomic DNA from C. glutamicum, E. coli, M. smegmatis, M. phlei, S. venezuelae, and S. californicus was
purified with Nucleospin Microbial DNA from Macherey-Nagel. gDNA from S. coelicolor was extracted following the salting-out pro-
cedure (Kieser et al., 2000). M. tuberculosis gDNA was purified from liquid cultures by chloroform/isoamyl alcohol extraction protocol
after treatment with lysozyme, proteinase K and cetrimide (hexadecyltrimethylammonium bromide) (Larsen et al., 2007). DNA poly-
merases (Q5) and restriction endonucleases were purchased from New England Biolabs (NEB). DNA fragments were purified from
agarose gels using the High-Yield PCR Cleanup and Gel Extraction kit from Sud-Laborbedarf Gauting. Plasmid purifications from
liquid cultures were performed using the High-Yield Plasmid DNA Purification kit from the same source. All amino acid exchanges
were constructed by two-step PCR using mismatched primer pairs (Ho et al., 1989). NEBuilder HiFi DNA Assembly Master Mix
(NEB) was used for Gibson assembly. E. coli DH5« (Promega) and E. coli ET12567[pUZ802] (MacNeil et al., 1992; Paget et al.,
1999) were used as hosts for plasmid construction and maintenance, and for intergeneric conjugation with S. coelicolor, respectively.
C. glutamicum mutants were constructed using the pK19mobsacB recombinant vector with SacB counterselection (Schafer et al.,
1994). S. coelicolor LW277, harboring the native efp coding sequence with an in-frame translational fusion to the His-tag, was con-
structed by intergenic conjugation of pTE1213 into wild-type S. coelicolor M145 and subsequent apramycin selection, followed by a
second intergenic conjugation with pTE1208 and counterselection on kanamycin, and finally two consecutive passages on Soya
Flour Mannitol (SFM) without antibiotics. Plasmids pCM4.4 (E.T. and S.Y., kindly provided by H. Zhao, unpublished data) and
pCMU-4K (S.Y., unpublished data) were used for S. coelicolor genome editing by CRISPR-Cas9 and for plasmid curing, respectively.

Proteomic analysis

Cells (5x108) were processed using the iST kit (PreOmics) following the manufacturer’s instructions and resuspended to yield 0.8 mg/
mL protein. For LC-MS/MS purposes, 5-ul aliquots of desalted peptides were injected into an Ultimate 3000 RSLCnano system
(Thermo), separated in a 15-cm analytical column (75 pm ID home-packed with ReproSil-Pur C18-AQ 2.4 um from Dr. Maisch) using
a 120-min gradient from 5 to 60% acetonitrile in 0.1% (v/v) formic acid. The effluent from the HPLC was directly electrosprayed into a
Q Exactive HF (Thermo) operated in data-dependent mode to automatically switch between full-scan MS and MS/MS acquisition.
Survey full-scan MS spectra (from m/z 375-1600) were acquired with resolution 60,000 at m/z 400 (AGC target of 3x10°). The
10 most intense peptide ions with charge states between 2 and 5 were sequentially isolated to a target value of 1x1 0°, and frag-
mented at 27% normalized collision energy with resolution 15,000 at m/z 400. Typical mass spectrometric conditions were: spray
voltage, 1.5 kV; no sheath or auxiliary gas flow; heated capillary temperature, 250°C; ion selection threshold, 33,000 counts.
MaxQuant 1.5.2.8 (Tyanova et al., 2016) was used to identify proteins and quantify them by LFQ with the following parameters: Data-
base, uniprot_3AUP000000582_Cglutamicum _15032017; MS tol, 10ppm; MS/MS tol, 20ppm; Peptide FDR, 0.1; Protein FDR,
0.01 Min.; peptide Length, 5; Variable modifications, Oxidation (M); Fixed modifications, Carbamidomethyl (C); Peptides for protein
quantitation, razor and unique; Min. peptides, 1; Min. ratio count, 2. Identified proteins were considered as statistically significant with
FDR = 0.05 and sO = 1 (Two-sample test adjusted for multiple comparisons, Perseus). The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset
identifier PXD014742.

Protein cluster analysis

Downregulated proteins identified by MaxQuant were uploaded into the database for annotation, visualization and integrated discov-
ery (DAVID) (Huang et al., 2009). Standard settings were used and significantly overrepresented pathways were identified in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) Pathway Database. Functional clusters with P-values
below 0.05 were considered overrepresented.
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E. coli EF-P reporter strains

E. coli Peagsa::lacZ AcadAB Aefp or E. coli Peogpai:lacZ AcadAB Aefp AepmA cells were transformed with pBAD33 expressing EF-P
variants under the control of the Pgap, and grown overnight with continuous shaking in 1.8-mL aliquots of LB buffered with phosphate
to pH 5.8 [KH,PO,4 91.5 mM, KoHPO,4 8.5 mM] in tightly closed 2-mL centrifuge tubes to provide a microaerophilic atmosphere. Cells
were harvested and p-galactosidase activity was determined as previously described (Tetsch et al., 2008; Ude et al., 2013).

C. glutamicum EF-P reporter strains, single-cell fluorescence microscopy and quantitative analysis

For quantification of EF-P activity in C. glutamicum, the strain ATCC13032 Aefp PdnaK-RPPP-egfp was transformed with pEKEx2
containing a copy of efp under the control of the native EF-P¢g, promoter. A 50 ulL aliquot of an overnight culture was inoculated into
fresh BHI medium and incubated under vigorous shaking for 2 h at 30°C to stimulate exponential growth, followed by 1 h at 40°C to
induce Pgnax and 1 h at 30°C to allow for recovery and folding of eGFP. Aeration was provided during the whole incubation time. To
measure eGFP fluorescence, cells were washed in ice-cold, phosphate-buffered saline (PBS) and fixed on an agarose pad [1% w/v in
PBS] placed on a microscope slide with coverslip. Micrographs were taken on a Leica microscope DMI 6000B equipped with a Leica
DFC 365Fx camera (Andor, 12bit). eGFP fluorescence was visualized using an excitation wavelength of 460 nm and a 512 nm emis-
sion filter with a 75-nm bandwidth. Fluorescence intensities of a minimum of 300 cells per efp transformant were collected and quan-
tified using Fiji (Schindelin et al., 2012). Statistical analysis was done by using two-tailored t test. Quantification of Cgl1117 production
was done by monitoring fluorescence of Cgl1117-eGFP. The strains C. glutamicum Aefp and C. glutamicum efp-6His (which pro-
duces His-tagged EF-P) were grown in BHI medium to an ODgyg of 2. Cells were collected by centrifugation, washed in ice-cold
PBS, fixed and imaged under the microscope. eGFP fluorescence was quantified as described above.

Western blot analysis

SDS-polyacrylamide gels were used to fractionate proteins. When necessary, the gels were stained with Instant blue. Proteins were
transferred to nitrocellulose membranes by the wet-transfer method. Endogenous EF-P containing an N-terminal 6xHis tag was de-
tected with 1:10,000 dilutions of anti-6xHis antibodies (Abcam) in TBS supplemented with 3% (w/v) BSA. The fluorescence-labeled
secondary antibody (IRDye 800CW, Abcam) was used at a concentration of 1:20,000. Membranes were washed in TBS-TT buffer
[10 mM Tris/HCI pH 7.5, 150 mM NacCl, 0.05% (v/v) Tween 20, 0.2% (v/v) Triton 100] and scanned using the Odyssey CLx imaging
system (LI-COR Biosciences).

Purification of endogenous and recombinant EF-P

For purification of the C. glutamicum EF-P, the strain C. glutamicum efp-6His was grown in BHI medium to an ODggq of 2 (exponential
phase) or overnight (stationary growth phase). Endogenous EF-P was isolated from the S. coelicolor efp-6His strain after cultivation of
cells for 48 h or 7 days. Endogenous EF-P was isolated from M. smegmatis pMycoFos (Ly et al., 2011) Pgg-efp-6His transformants
grown at 37°C for 24 or 72 h.

EF-P variants with amino acid replacements were produced in C. glutamicum Aefp cells grown in rich medium supplemented with
the appropriate antibiotic overnight. Recombinant EF-P was expressed in E. coli MG1655 Aefp AepmA cells grown in LB medium
supplemented with 0.2% (w/v) arabinose and antibiotic as needed. Cells were collected and resuspended in lysis buffer (25 mM
HEPES pH 8, 125 mM NaCl, 25 mM KCI). Cells were lysed using the high-pressure system from Constant Systems, and the cytosolic
fractions were obtained after ultracentrifugation. Fractions were kept on ice prior to further purification. Endogenous and recombi-
nant proteins for MS analysis were purified using a Ni?*-nitrilotriacetic acid (NTA) resin (QIAGEN), washed and eluted, respectively, in
lysis buffer supplemented with 20 mM and 200 mM imidazole. For crystallization of the endogenous C. glutamicum EF-P, the eluate
was further fractionated by size-exclusion chromatography on a Superdex 200 10/300GL column (GE Life Sciences). Fractions con-
taining EF-P were combined, injected into a dialysis tube (SnakeSkin, ThermoFisher) and concentrated by incubation in lysis buffer
saturated with sucrose.

Mass spectrometry of intact proteins

Samples were desalted and measured using a MassPREP On-Line Desalting Cartridge (Waters) on an Ultimate 3000 HPLC system
(Dionex) coupled to a Finnigan LTQ-FT Ultra mass spectrometer (Thermo Scientific) with electrospray ionization (spray voltage 4.0
kV, tube lens 110 V, capillary voltage 48 V, sheath gas 60 arb, aux gas 10 arb, sweep gas 0.2 arb). Xcalibur Xtract Software (Thermo
Scientific) was used for data analysis and deconvolution.

Sample preparation for MS-based proteomics to identify putative PTMs on peptide level

Purified protein (1 ng) was dissolved in 200 pl of X-buffer (7 M urea, 2 M thiourea in 20 mM HEPES buffer, pH 7.5) for trypsin digestion
or in 200 ul of ABC buffer (25 mM ammonium bicarbonate) for digestion by chymotrypsin. Upon reduction with 1 mM DTT (0.2 pl of
1 M stock in ddH»0) for 45 min at 25°C, proteins were alkylated using 5.5 mM IAA (2 ul of 550 mM stock in ddH>0) for 30 min at 25°C
and samples were quenched with 4 mM DTT (0.8 ul of 1 M stock) for 30 min at 25°C. Samples intended for trypsin digestion were first
digested with LysC (1 pl of 0.5 ug/ul, Wako, MS grade) for 2 h at 25°C, then diluted with triethylammonium bicarbonate (TEAB) buffer
(600 pl of 50 mM stock in ddH,0) and digested with trypsin (1.5 ul of 0.5 pg/pl in 50 mM acetic acid, Promega, sequencing grade)
for a further 16 h at 37°C. Samples for chymotrypsin digestion were supplemented with 2 ul of 1 M CaCl,, then 1 ul of 0.5 pg/ul
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chymotrypsin (Promega) was added and the mixture was incubated for 16 h at 25°C. Samples were then acidified with 1% (v/v) FA
and desalted using SepPak® C18 cartridges (50 mg, Waters) with a vacuum manifold. The cartridges were first washed with ACN
(2 x 1 ml) and equilibrated with 0.5% (v/v) FA (3 x 1 ml) prior to loading the samples. After washing with 0.5% (v/v) FA (3 x 1 ml),
peptides were eluted with 80% (v/v) ACN containing 0.5% FA (2 x 0.25 ml) and freeze-dried using a Speedvac centrifuge. Samples
were prepared for MS analysis by dissolving them in 30 ul of 1% (v/v) FA and filtering through 0.22-um PVDF filters (Millipore).

Sample preparation for MS-based proteomics to detect unmodified EF-P peptides in cell lysates

M. tuberculosis H37Rv cultures were inactivated by incubating frozen 0.5-1g wet weight pallets in 5mL methanol under agitation at
room temperature for 16 hours. Subsequently, methanol was removed by agitation at 37°C overnight. The remaining pellet was sol-
ubilized in 200uL lysis buffer for future proteomic analysis. Successful inactivation was validated by Mycobacteria Growth Indicator
Tube analysis (MGIT) and culture on 7H10 agar supplemented with 10% bovine calf serum. M. smegmatis cultures were harvested
and resuspended in lysis buffer. Cell disruption was achieved in two steps. First by transferring 300uL of the cell suspensions to a
sterile 2mL screwcap centrifuge tubes, including 300uL of 0.1mm glass pearls and agitating at maximum speed for three rounds
of 45 s using a sample homogenizer (FastPrep-24, MP Biomedicals). Second, we transferred the cell suspensions to a new tube
and optimized the lysis using the high pressure system (Constant Systems) as described above. Mass spectrometry samples
were prepared as described above using trypsin for M. smegmatis and chymotrypsin for M. tuberculosis.

MS measurement and analysis of putatively modified peptides

MS analysis was performed on a Q Exactive Plus instrument coupled to an Ultimate3000 Nano-HPLC via an Easy-Spray ion source
(Thermo Scientific). Samples were loaded on a 2-cm PepMap RSLC C18 trap column (particles 3 um, 100A, inner diameter 75 um,
Thermo Scientific) with 0.1% (v/v) TFA and separated on a 50 cm PepMap RSLC C18 column (particles 2 pm, 100A, inner diameter
75 um, Thermo Scientific) held at a constant temperature of 50°C. The gradient was run from 5%-32% acetonitrile, 0.1% (v/v) FA over
a period of 152 min (7 min 5%, 105 min to 22%, 10 min to 32%, 10 min to 90%, 10 min wash at 90%, 10 min equilibration at 5%) at a
flow rate of 300 nL/min. For measurements of chemical-proteomic samples on the fusion instrument, survey scans (m/z 300-1,500)
were acquired in the orbitrap with a resolution of 120,000 at m/z 200 and the maximum injection time set to 50 ms (target value 2e5).
Most intense ions of charge states 2-7 were selected for fragmentation with high-energy collisional dissociation at a collision energy
of 30%. The instrument was operated in top-speed mode and spectra were acquired in the ion trap with the maximum injection time
set to 50 ms (target value 1e4). The option to inject ions for all available parallelizable times was enabled. Dynamic exclusion of
sequenced peptides was set to 60 s. Real-time mass calibration was based on internally generated fluoranthene ions. Data were
acquired using Xcalibur software version 3.0sp2 (Thermo Scientific).

For measurements of the endogenous EF-P from M. smegmatis and M. tuberculosis we used Orbitrap Fusion (Thermo Scientific)
with lonopticks 25 cm Aurora Series emitter column (25 cm x 75 pm ID, 1.6 pm C18), the flow was adjusted to 400 nL/min and 40°C
was used for trap and main column. Fusion instrument survey scans (m/z 300-1,500) were acquired in the orbitrap with a resolution of
120,000 at m/z 200 and the maximum injection time set to 50 ms (target value 2e5). Most intense ions of charge states 2-7 were
selected for fragmentation with high-energy collisional dissociation at a collision energy of 30%. The instrument was operated in
top speed mode and spectra were acquired in the ion trap with the maximum injection time set to 50 ms (target value 1e4). The option
to inject ions for all available parallelizable time was enabled. Dynamic exclusion of sequenced peptides was set to 60 s.

MS raw files were analyzed with MaxQuant software (version 1.5.3.8). MS/MS-based peptide identification was carried out using
the Andromeda search engine with fasta files containing WT efp and efp point mutants. For recombinant EF-P from E. coli, the E. coli
UniProtKB database was also used. The following parameter settings were employed: peptide and protein FDR, 1%; enzyme
specificity, trypsin; minimal number of amino acids required for peptide identification, 7; variable modification, methionine oxidation;
fixed modification, carbamidomethylation. At least one unique peptide was required for the identification of protein. All other
parameters were used according to the default settings. For identification of putatively unknown modifications, search for dependent
peptides was enabled. Potential contaminants and reverse hits were removed from the result lists.

Isoelectric focusing

Purified EF-P (1 pg) was loaded on a precast isoelectric focusing gel with a pH gradient range of 4-7 (SERVAGel, Serva). Prior to
sample application, gels were prefocused at 100 V for 10 min. Samples were then focused for 1 h at 200 V, 1 h at 300 V and
30 min at 500 V. Proteins were transferred to a nitrocellulose membrane by the wet-transfer method and detected with anti-6xHis
antibodies as described above.

Protein crystallization and structure determination

Prior to crystallization, EF-P was concentrated to 3 mg/ml using centrifugal filter devices (Amicon, Merck). Aggregates and debris
were removed by centrifugation (16.000xg for 20 min). Diffraction-quality crystals of C. glutamicum EF-P were obtained by micro-
seeding in 100 mM sodium acetate, 100 mM HEPES pH 7.5, 22% (w/v) PEG4000 at 4°C (0.3 pL protein, 0.2 uL precipitant, 0.1 pL
seed stock). The seed stock was generated using the Seed Bead kit (Hampton Research) according to the manufacturer’s protocol
(Luft and DeTitta, 1999) and crystals of low diffraction quality, previously obtained under various PEG-based conditions in a
high-throughput screening campaign. For cryoprotection, crystals were soaked in mother liquor supplemented with 30% (w/v)
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ethylene glycol, flash-cooled and stored in liquid nitrogen. Data collection was carried out at the synchrotron beamline ID 30-A3 at the
ESRF (European Synchrotron Radiation Facility, Grenoble, France). The data were processed with XDS (Kabsch, 2010b) and the
structure solved by molecular replacement with PHASER (McCoy et al., 2007), using the coordinates of EF-P from P. aeruginosa
(PDB code: 30YY), which shares 33% sequence identity with the homolog from C. glutamicum, as search model, after truncation
to the C-alpha carbon atoms (CHAINSAW, CCP4) (Kabsch, 2010a; McCoy et al., 2007; Winn et al., 2011). Model building was
done with COOT and refinement of the coordinates was carried out with Phenix (Afonine et al., 2012). The structural figures were
prepared using PyMOL 2.3 (Schrédinger, 2015). For data processing and structure refinement statistics, see Table S4.

Alignment and Sequence logo

Alignments of EF-P sequences from diverse Actinobacteria (Figure 6) and previously crystallized EF-P proteins (Figure S3A) were
uploaded in combination with EF-P¢4 structure to the ESPript 3.0 platform (Robert and Gouet, 2014) for rendering analysis of sec-
ondary structure. Sequence logos of B2-loop-B3 EF-P sequences were generated by uploading the alignment of all EF-P sequences
selected according to Figures S3B-S3E on WebLogo3 platform (Crooks et al., 2004).

QUANTIFICATION AND STATISTICAL ANALYSIS

Two-tailed t tests were performed using GraphPad Prism version 8.3.1 for Windows. Differences are considered significant when
p-values were less than 0.05. Mean and standard deviation are shown unless indicated otherwise in the figure legends. All data
are representative of at least three different experiments. The number of bacterial cells analyzed under fluorescence microscopy
are shown in the respective figure legends. Pathways significantly enriched in downregulated proteins were identified by Fisher Exact
test using the online platform DAVID (Huang et al., 2009) as indicated above.

DATA AND CODE AVAILABILITY

Crystallographic data of EF-P structures have been deposited in the Protein Data Bank (https://www.ebi.ac.uk/pdbe/) under the PDB

accession code PDB: 6S8Z. The mass spectrometry proteomics data are available via ProteomeXchange with identifier
ProteomeXchange: PXD014742.
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