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3Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
4Large Scale Structures Group, Institut Laue-Langevin, 38000 Grenoble, France
5CEITEC, Masaryk University, 625 00 Brno, Czech Republic
6NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
7Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, �Ceské Bud�ejovice, Czech Republic
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SUMMARY

Carbohydrate-binding proteins from pathogenic bacteria and fungi have been shown to be implicated in
various pathological processes, where they interact with glycans present on the surface of the host cells.
These interactions are part of the initial processes of infection of the host and are very important to study
at the atomic level. Here, we report the room temperature neutron structures of PLL lectin fromPhotorhabdus
laumondii in its apo form and in complex with deuterated L-fucose, which is, to our knowledge, the first
neutron structure of a carbohydrate-binding protein in complex with a fully deuterated carbohydrate ligand.
A detailed structural analysis of the lectin-carbohydrate interactions provides information on the hydrogen
bond network, the role of water molecules, and the extent of the CH-p stacking interactions between fucose
and the aromatic amino acids in the binding site.

INTRODUCTION

Neutronmacromolecular crystallography (NMX) provides unique

informationon the locationof hydrogenatoms inproteins andsol-

vent molecules that is rarely obtainable by X-ray crystallography

even at high resolution (Blakeley et al., 2015; Eriksson et al., 2013;

Woi�nska et al., 2016). Neutrons are scattered from atomic nuclei

with a scattering power that is isotope dependent. Since the

neutron scattering lengths of hydrogen and deuterium are of

similarmagnitudes to the other elements commonly found in pro-

teins, such as carbon, oxygen, and nitrogen, they can be easily

visualized in neutron crystallographic analyses (Blakeley et al.,

2018). NMX is thus a powerful technique for structural glycobiol-

ogy where the location of hydrogen atoms is of crucial impor-

tance for understanding the interactions between carbohydrates

and amino acids that may involve direct and water-bridged

hydrogen bonds. To date (December 2020), there are only 175

macromolecular structures deposited in the Protein Data Bank

that have been determined using neutron diffraction data. Glyco-

side hydrolases (Niimura et al., 1997;Wan et al., 2015), lytic poly-

saccharide monooxygenase (Bacik et al., 2017; O’Dell et al.,

2017), and xylose isomerase (Langan et al., 2014) are carbohy-

drate-processing enzymes that have been extensively studied

by neutron diffraction. On the other hand, only two lectins

(sugar-bindingproteins) havebeenstudiedusingneutron crystal-

lography, namely concanavalin A (Blakeley et al., 2004; Gerlits

et al., 2017; Habash et al., 1997, 2000; Kalb et al., 2000) and ga-

lectin-3C (Manzoni et al., 2016, 2018).

Lectins are carbohydrate-binding proteins having no enzy-

matic activity. They are involved in various physiological and

pathological processes, including molecular and cellular recog-

nition and adhesion (Lis and Sharon, 1998). Many pathogenic

bacteria use lectins as toxins or adhesins to promote bacterial

infection (Beddoe et al., 2010; Moonens and Remaut, 2017)

and the detailed knowledge of their binding site has been used

in the design of anti-adhesive compounds, some of them now

in preclinical study (Mousavifar et al., 2018).

Photorhabdus laumondii (formerly P. luminescens) is a biolumi-

nescent rod-shaped Gram-negative bacterium that lives in a

mutualistic relationship with entomopathogenic nematodes

from the genus Heterorhabditis (Machado et al., 2018; Waterfield

et al., 2009). This species can also adopt an alternative lifestyle in

the soil, with positive influence on plant rhizosphere (Regaiolo

et al., 2020). P. laumondii produces several lectins; three of

them, PLL (Kumar et al., 2016), PLL2 (Fujdiarová et al., 2020),

and PLL3 (Faltinek et al., 2019) having similar in sequences,
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have been recently characterized and are proposed to play

important roles in the complex Photorhabdus life cycle. All three

lectins bind L-fucose and their monomeric structure folds as a

seven-bladed b propeller characteristic of this family of lectins.

PLL is a homotetramerwith seven putativemonosaccharide bind-

ing sites permonomer, of which threewere occupied by L-fucose

Table 1. Room temperature X-ray and neutron data collection and structure refinement statistics for the H/D-exchanged apo PLL and

D-PLL/fucose-d12 complex

H/D-PLL D-PLL

Data collection Apo Fucose-d12

Neutrons

Instrument LADI-III LADI-III

Wavelengths (Å) 3.1–4.1 3.07–4.05

Detector Image plate Image plate

Resolution (Å) 39–2.20 (2.32–2.20) 46–2.20 (2.32–2.20)

Space group I222 I222

Unit cell parameters

a, b, c (Å) 72.7, 89.3, 159.4 72.7, 89.2, 159.2

a, b, g (�) 90, 90, 90 90, 90, 90

Rmerge (I) (%) 18.1 (45.8) 16.3 (32.6)

Rpim (I) (%) 13.2 (26.1) 8.3 (16.0)

Mean I/s(I) 6.2 (2.0) 8.0 (3.4)

Completeness (%) 82.9 (73.5) 84.9 (74.7)

Multiplicity 2.8 (3.0) 4.1 (4.0)

No. of unique reflections 21,855 (2,797) 22,348 (2,822)

Crystal size (mm3) 0.7 0.5

X-rays

X-ray source FIP-BM30A, ESRF GeniX 3D Cu High Flux (Xenocs), IBS

Wavelength (Å) 0.9796 1.5418

Detector ADSC Q315r Mar 345 (marXperts)

Resolution (Å) 46–1.70 (2.02–1.70) 33–1.84 (1.88–1.84)

Unit cell parameters

a, b, c (Å) 72.7, 89.3, 159.4 72.7, 89.2, 159.2

a, b, g (�) 90, 90, 90 90, 90, 90

Rmerge (I) (%) 6.4 (77.5) 11.3 (58.2)

Rmeas (I) (%) 7.5 (90.8) 11.8 (64.0)

CC½ (%) 99.8 (63.3) 99.8 (82.7)

Mean I/s(I) 12.4 (1.65) 14.7 (3.1)

Completeness (%) 98.6 (99.7) 100.0 (100.0)

Multiplicity 3.5 (3.5) 11.5 (5.8)

No. of unique reflections 56,577 (4,157) 45,268 (2,766)

Refinement

Rwork/Rfree (%), X-ray 13.5/15.6 12.1/14.0

Rwork/Rfree (%), neutron 21.5/24.0 19.1/22.1

No. of atoms (protein) 2,850 2,939

No. of water molecules 340 334

RMSD

Bond lengths (Å) 0.010 0.010

Bond angles (�) 1.312 1.323

Average B factors (Å2)

Protein 29.7 34.6

Ligand – 51.9

PDB: 7BBI 7BBC

Values in parentheses are for the highest-resolution shell. RMSD, root-mean-square deviation.
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in the X-ray crystal structure (Kumar et al., 2016). The PLL lectin

from P. laumondii is an excellent model system for the study of

lectin/carbohydrate interactions since the binding of fucose in-

volves several hydrogen bonds to the protein side neutron struc-

tures chain and main chain atoms, bridged by water molecules,

and, very interestingly, hydrophobic contact with two tryptophan

residues that involve CH/p dispersion interactions important in

protein-carbohydrate complexes (Wimmerová et al., 2012).

To optimize the study of the lectin-carbohydrate interactions

using neutron diffraction experiments, it is highly advantageous

to perdeuterate (i.e., fully deuterate) both the protein and the

ligand, so that all hydrogen atoms are replaced by deuterium.

This maximizes the visibility of the coherent neutron diffraction

signal (Haertlein et al., 2016) by eliminating the inherently large

incoherent scattering from hydrogen. In addition, the negative

sign of the coherent neutron scattering length of hydrogen gives

rise to cancellation effects in neutron scattering length density

maps determined at medium resolutions (�1.6–2.5 Å), which

makes it difficult to visualize hydrogen and carbon atoms in

-CH2 groups (Fisher et al., 2014; Koruza et al., 2019). The use

of perdeuterated molecules obviates this problem and provides

better quality neutron scattering length density maps.

Perdeuterated recombinant proteins are now commonly pro-

duced using bacterial and yeast expressions systems that have

been adapted to D2O-based growth medium and a deuterated

carbonsource (Haertlein etal., 2016;Meilleur et al., 2009).Perdeu-

terated glycans, on the other hand, are not easily available and

only a limited number have been produced via synthetic or enzy-

matic approaches (Cress et al., 2019; Kent et al., 2015; Sawama

et al., 2012). Very few neutron structures of proteins complexed

with perdeuterated carbohydrate have been characterized (Kova-

levsky et al., 2008, 2010; Langan et al., 2014). Recently, however,

we reported the production of perdeuterated L-fucose-d12 (Fuc-

d12) obtained using a glyco-engineered E. coli strain, genetically

modified to produce high titers of L-fucose (Gajdos et al., 2020).

Here, we report the neutron and X-ray structures of the apo

and fucose-bound PLL lectin from P. laumondii. This is, to our

knowledge, the first account of a neutron structure of a perdeu-

terated lectin bound to a perdeuterated monosaccharide, allow-

ing for a precise description of the hydrogen bond network and

the p-stacking interactions between the hydrophobic face of

fucose and the aromatic rings of amino acids in the binding site.

Figure 1. X-ray structure of D-PLLmonomer

with fucose-binding sites

(A) Top view of the D-PLL monomer (PDB: 7BB4).

Four molecules of fucose located between adja-

cent repeats (W1–W7) are shown in stick repre-

sentation. Black-circled sites are sites that have

been already described. The red-circled site is an

additional binding site described here.

(B) Side view of the monomer.

RESULTS

Neutron diffraction data from PLL that

was buffer-exchanged in D2O (H/D-PLL)

in the apo form and from perdeuterated

PLL (D-PLL) complexed with perdeuter-

ated fucose (Fuc-d12) were collected from single crystals (vol-

ume 0.5–0.7 mm3) to 2.2 Å resolution (Figure S1). For the joint

X-ray/neutron structural refinement, room temperature (RT)

X-ray data were collected from the same crystals to resolutions

of 1.70 Å (H/D-PLL apo) and 1.84 Å (D-PLL/Fuc-d12), respec-

tively (Tables 1 and S1). In addition, three RT X-ray structures

of D-PLL apo, H/D-PLL/H-fucose (commercial L-fucose) and

D-PLL/H-fucose complexes as well as one 100 K X-ray struc-

ture of D-PLL/H-fucose complex were collected for comparison

(Table S2).

Overall structure of D-PLL and comparison of RT and
100 K X-ray structures
The overall X-ray structures of H/D-exchanged PLL and D-PLL

consist of a homotetramer of seven-bladed b propellers linked

by disulfide bridges (Figure 1). There is only one PLL monomer

in the asymmetric unit. It is similar to the previously reported

H-PLL (Kumar et al., 2016) and will not be described in details

here. The superposition of the RT joint X-ray/neutron refined

structures of D-PLL and H/D-PLL gives an overall root-mean-

square deviation (RMSD) of 0.17 Å (backbone atoms) indicating

that the deuteration did not lead to any significant modifications

of the 3D structure and that both structures are comparable.

Similar results were obtained after superposition of the 100 K

X-ray crystal structures of the H-PLL and D-PLL giving an

RMSD of 0.13 Å (backbone atoms).

Interestingly, larger differences were observed when

comparing the structures obtained at RT and 100 K, with

mean RMSD of 0.64 Å (backbone atoms). After investigation,

two clear differences were observed between the RT and 100

K structures of the protein, regardless of its H- or D-form. Differ-

ences were visibly pronounced in the short loops connecting b

strands C and D of the W1 and W5 repeats, respectively,

caused by glycerol molecules that altered their conformations.

Specifically, in both short loops, a glycerol molecule is strongly

bound to the amino acids via six hydrogen bonds (Figure 2)

making the loops shift away from their normal positions

observed in the RT structures. All 100 K structures of PLL lectin

from the previous study (Kumar et al., 2016), and this work,

were collected from crystals soaked in glycerol solution, which

served as a cryoprotectant during the crystal cryo-cooling.

Glycerol readily binds to the protein with an average of 17
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glycerol molecules per monomer for the apo protein and 11 for

the fucose-bound complex.

An unexpected difference between X-ray structures at RT and

at 100 K is the number of occupied binding sites. In the crystal

structure of the H-PLL/H-fucose complex (PDB: 5C9P), three

fucose molecules were observed in three binding sites: site II

(between W-motifs 1 and 2), III (between W-motifs 2 and 3),

and VII (between W-motifs 6 and 7), respectively (Figure 1).

Here, we report an additional binding site IV (between repeats

W3 and W4) occupied by a fucose molecule in our RT and 100

K X-ray structure, in place of a glycerol molecule in the previously

reported structure at 100 K (Figure 3). The fucosemolecule could

be modeled in a mixture of a/b configurations with occupancies

of 54/46. Generally, the fucose is bound in site IV in a similar

manner to the other sites (Figure S2). The strongest hydrogen

bonds are between theO4 oxygen of L-fucose and the backbone

ND of Ala190 and O of Thr168. Fucose is further stabilized via

backbone hydrogen bonds of NH (Thr168) to the sugar ring O

or O4 oxygen atoms.

Neutron structures and quality of the neutron
density map
The use of perdeuterated protein yielded high-quality neutron

scattering length density maps (Figure 4A) (hereafter referred

to as "neutron maps"). Exchangeable protons could be located

without ambiguity in the 2mFo � DFc neutron map. The deute-

rium on the amine group of the main chain could be visualized

as well as their involvement in hydrogen bonds (Figure 4B). How-

ever, the H/D-exchanged protein neutron structure exhibited

clear cancellation effects in the 2mFo � DFc maps, mostly

around aliphatic residues (Figure 4A).

The protonation states of the histidine residues could also be

unambiguously determined from the analysis of theperdeuterated

structure (D-PLL/Fuc-d12). All histidines of the H/D-exchanged

apo PLL were protonated on both nitrogen atoms ND1 and NE2

as a result of the low pH of 4.6 used in the crystallization condition

In comparison, all but two of the histidine residues were equally

protonated in the perdeuterated D-PLL/Fuc-d12 crystal (Table 2)

grown at a physiological pH (0.1 M sodium potassium tartrate,

pH�7).Basedon theexaminationof the2mFo�DFcomit neutron

map, His155 and His176were found to be in the neutral NE2-pro-

tonated and ND1-protonated tautomeric forms, respectively (Fig-

ure 4C). It is noteworthy that none of the histidine residues of the

PLL lectin is involved or is in the vicinity of the sugar-binding sites.

Further analysis of the neutron structures showed no protonation

on any acidic side chains (Asp, Glu).

The 2mFo � DFc X-ray map for the D-PLL/Fuc-d12 complex at

1.85 Å resolution shows clear electron density for the ligand in

binding sites II (Figure 5), III, and VII. The fourth binding site

described above for the RT X-ray structure is not occupied by

the ligand in the neutron structure of the complex. The site is

occupied by solvent molecules (Figure S3B) that are also

Figure 2. Superposition of 100 K (orange, PDB: 7BB4) and room temperature (cyan, PDB: 7BBC) X-ray structures of repeatsW1 andW5 of the

D-PLL b propeller. 2mFo – DFc electron density is shown as a blue mesh and contoured at 1.5s level

Hydrogen bonds are shown as magenta dashed lines and distances are given in Å. (Top) In the 100 K structure, a glycerol molecule (used as a cryoprotecting

agent) binds strongly to the protein changing the native conformation of the short loop between strands C and D of the repeats W1 andW5 observed in the room

temperature structure collected from crystals mounted in capillaries. (Bottom) In the RT structure, native conformation of loops is presented. Glycerol molecules

(transparent gray sticks) from the 100 K structure are superimposed with the RT structure.
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observed in the 100 K X-ray structure (PDB: 5C9P). A possible

explanation is that this site has a lower affinity for fucose than

the other sites, as suggested previously (Kumar et al., 2016). In

all sites, fucose could be modeled in both a/b configurations

with occupancies of 30/70, in agreement with the population of

30/70 observed by NMR in solution (Ryu et al., 2004). The

neutron scattering density around the deuterated fucose mole-

cule is clearly different from the electron density given that the

deuterium atoms contribute strongly to the neutron scattering

(Figure 5A). As a result, neutron peaks of the methyl group

together with deuterium atoms on carbon atoms are visible in

the density map and the directionality of the fucose hydroxyl

groups could be determined. The map quality is better in binding

site II located between blades W1 and W2 of the b propeller.

Hydrogen bonding in the fucose-binding sites
The sugar-binding mode is essentially identical in all binding

sites and the orientation of the sugar is similar to the one previ-

ously observed in the X-ray structure (Kumar et al., 2016). Only

the novel features highlighted by the neutron maps are therefore

described here. In site II, the two key fucose hydroxyl groups

OD3 and OD4 are involved in direct hydrogen bonds with the

protein (Figure S4). The neutronmap displays very good continu-

ity of density between fucoseO3 and the hydroxyl group of Thr94

(Figure 5B). The neutron structure clarifies the direction of the

hydrogen bond, with deuterium on Fuc-O3 pointing toward

OG1 of the Thr94 side chain (1.94 Å), while the deuterium on

this oxygen goes to the solvent. The Fuc-O4 oxygen atom ac-

cepts an H bond from the backbone amine of Thr94 (2.02 Å)

clearly observed in the neutron density map while the deuterium

of Fuc-O4 points toward the backbone oxygen of Val72 (2.06 Å).

The same hydrogen bond network is observed in site III, with

the addition of the ring oxygen O5 accepting one hydrogen

bond from the backbone amide of Gly120. Fucose has the

same orientation in site VII but the map is of lower quality in

this region. Measured distances and angles of hydrogen bonds

are presented in Table 3.

The neutron structure also provides insight to the role of water

molecules in the ligand binding. In binding site II, one water mole-

cule bridges between Fuc-O1 in b configuration and the protein,

with clear density around the two deuterium atoms involved. The

Fuc-O1b atom accepts an H bond (1.62 Å) from this water, which

in turn accepts another hydrogen bond from the backbone amide

of Val72 (2.30 Å). Two additional waters seem to be bridging the

interaction of the Fuc-O3 atom and Asp95, although with weak

neutron density suggesting higher mobility and weaker

coordination.

CD/p interactions observed in the neutron structure
All fucose-binding sites of the PLL lectin are characterized by a

conserved tryptophan-tryptophan cross-strand pair whose aro-

matic planes are directed at a near-right angle (varying from 87�

to 115�), creating a cleft to which the fucose is coordinated with

interaction from both its hydrophobic face and its methyl group

(Figure 5C). The neutron maps highlight the perfect complemen-

tarity of shape between the flat surface formed by aliphatic

deuterium atoms on C3, C4, and C5 of fucose and the aromatic

ring of Trp99 (in site II) resulting in strong CD/p dispersion inter-

actions. The methyl group of fucose is furthermore stabilized by

interaction with the second tryptophan residue, Trp114 (in site II).

The same interaction is observed in the two other binding sites

(Figure S3) in the D-PLL/Fuc-d12 structure.

Two selection criteria were chosen for defining CD-p disper-

sion interactions based on previous studies (Brandl et al.,

2001). The first criterion was the closest distance between the

fucose carbon atom and the ring center of thep system of a tryp-

tophan residue (d(Cn-p)) with the cutoff value of 4.5 Å. The sec-

ond criterion was the angle at the deuterium atom (:C-D-p)

defined as the angle between the deuterium atom and the ring

center of the p system of a tryptophan residue with values being

R120� (Figure S4). To better describe deuterium atoms involved

in theCD-p interactions, the indole ring of tryptophan side chains

was taken as two separate aromatic rings (benzene and pyrrole)

with two geometrical centers. The measured interatomic dis-

tances and angles are listed in Table 4.

Analysis of the measured distances and angles shows that up

to four CD-p interactions occur in the fucose binding by PLL lec-

tin. Deuterium atoms on C3, C4, C5, and C6 are involved in CD-p

stacking interaction in all binding sites with average distances of

3.14, 2.95, 3.29, and 3.15 Å, respectively. In binding site II, the

strongest interaction is between D4 and the pyrrole ring of

Trp99 (2.85 Å), whereas deuterium atoms on C3 and C5 interact

weaker with the benzene part of Trp99with distances of 3.34 and

3.36 Å, respectively (Figure 5C). Furthermore, the deuterium

atom on the fucose methyl group interacts with the pyrrole ring

of the second tryptophan residue Trp114 with a distance of

3.27 Å. The binding interactions are the same in the other binding

sites (Figure S3).

Figure 3. X-ray structure of fucose in the

additional binding site IV of D-PLL located

between repeats W3 and W4 of the seven-

bladed b propeller

(A) 2mFo�DFc X-ray omit map (blue mesh) around

L-fucose is contoured at 0.9s. The position of

fucose O1 atom is modeled in both a (gray) and b

(green) configurations. Hydrogen bonds are de-

picted as magenta dashed lines. All distances are

given in Å (PDB: 7BB4).

(B) Superposition of the fucose (transparent gray

sticks) and a glycerol molecule (yellow sticks)

modeled in apo PLL (PDB: 5C9O). The fucose

atom labeling corresponds to the superimposed

glycerol oxygen atoms.
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Water network in the apo (ligand-free) neutron structure
In the apo (ligand-free) neutron crystal structure (2.2 Å resolu-

tion), the carbohydrate-binding sites are occupied by threewater

molecules, which are conserved in all three fucose-binding sites

II, III, and VII. The average crystallographic B factors for the three

water molecules are similar and rather high (50.7, 57.2, and

53.5 Å2, respectively) suggesting high mobility due to the limited

occurrence of hydrogen bonds to the protein. The positions of

water oxygen atoms were based on the 2mFo �DFc electron

density map peaks. In the neutron map, the waters form a

hydrogen-bonding network creating a continuous density (Fig-

ure 6A). Themost buried water molecule (Wat1) occupies the po-

sition of Fuc-O4 (Figure 6B). This is themost orderedwater mole-

cule establishing two hydrogen bonds with the protein. In

binding site II, Wat1 oxygen atom accepts an H bond from the

backbone amide of Thr94 (2.07 Å), while it donates one deute-

rium atom to themain chain oxygen of Val72 (2.05 Å). The second

deuterium atom of Wat1 is coordinated toward the other water

Wat2. TheWat1 water is coordinated in the same fashion in other

binding sites (Figure S5).

The two other water molecules are more weakly coordinated

and establish hydrogen bonds between them, rather than to the

protein. Interestingly, Wat2 occupies positions between C5 and

C6 (methyl group) of fucose, which is unconventional for sugar-

binding proteins. Usually waters occupy positions of oxygen

atoms of the sugar hydroxyl group mimicking the hydrogen

bonding of the saccharide. PLL binding sites show hydropho-

bic character, suggesting that the water molecules might be

stabilized by nonconventional lone-pair$$$p or O-H$$$p inter-

actions with the aromatic ring of the tryptophan (Durec

et al., 2018).

DISCUSSION

Protein-carbohydrate interactions are involved in many impor-

tant physiological and pathological processes, including cell

Figure 4. Quality of the neutron scattering length density map

(A) Stick representation and associated neutron density maps of selected residues of the H/D-PLL (magenta sticks) and D-PLL (cyan sticks). Hydrogens atoms

are colored white and deuterium atoms are colored yellow. The 2mFo � DFc neutron density map (green mesh) is contoured at 1s. The use of perdeuterated

protein provides better quality maps than those calculated for the H/D-exchanged protein where interpretation is limited by clear density cancellation effects

around the CH groups of the aliphatic amino acids.

(B) Example of a backbone hydrogen bond with a corresponding neutron density.

(C) Comparison of the protonation states of His176 and His155 for the H/D-exchanged apo PLL (magenta sticks) and D-PLL/Fuc-d12 (cyan sticks) neutron

structures. All distances are measured from a deuterium atom to the acceptor atom and are given in Å.

Table 2. Protonation states of histidine residues observed in the neutron crystal structures

State H51 H80 H100 H148 H155 H176 H196 H203 H244 H298 H339

Apo both both both both both both both both both ND both

Fucose both both both both NE2 ND1 both both both ND both
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trafficking, fertilization, immune response, cell adhesion, or viral

and bacterial infections. Lectins bind to carbohydratesmainly via

hydrogen bonds, either directly or through water bridges, as well

as via CH-p dispersion interactions. These latter can sometimes

be themain driving force behind lectin-carbohydrate interactions

(Asensio et al., 2013; Houser et al., 2020). The molecular mech-

anisms behind these interactions are predominantly studied at

the atomic level by X-ray crystallography, which can locate indi-

vidual hydrogens only at subatomic resolution (Takaba et al.,

2019). The focus of this study was to describe lectin-carbohy-

drate interactions by NMX as it provides unique and needed in-

formation on exact positions of hydrogen atoms involved in the

sugar recognition.

In this study, we report the first neutron structure, to our knowl-

edge, of a bacterial lectin in its unbound and in a ligand-bound

form. So far, two lectins have been studied by NMX, a

glucose/mannose-specific lectin concanavalin A from plants

(Blakeley et al., 2004; Gerlits et al., 2017; Habash et al., 1997,

2000; Schirò et al., 2012) and a human galactose-specific galec-

tin-3C (Manzoni et al., 2016, 2018).

We compare RT jointly refined X-ray/neutron crystal structures

of H/D-exchanged PLL lectin in its apo form and the perdeuter-

ated D-PLL/Fuc-d12 complex. No large differences were

observed between H and D forms of PLL lectin concluded that

perdeuteration did not affect the native state of the protein.

Some differences were observed for the 100 K and RT X-ray

structures of PLL lectin regardless of its H/D state. We observed

changes in conformation of short loops in repeats W1 and W5

that were caused by a bound glycerol used as a cryoprotectant

in the 100 K structures. Moreover, a fucose molecule in our RT

and 100 K structure of D-PLL lectin (PDB: 7B7C and 7BB4,

respectively) occupies an additional binding site IV between re-

peats W3 and W4 of the b propeller. This site has not been

described yet as it was occupied by water molecules (PDB:

5C9P) or a glycerol molecule (PDB: 5C9O) in 100 K X-ray crystal

structures (Kumar et al., 2016). Even though most of the X-ray

structures are solved from data collected at cryogenic condi-

tions (100 K), RT structures (293 K) can often provide more rele-

vant information on the protein conformation state and ligand

binding since they are closer to physiological conditions and

Figure 5. Perdeuterated PLL lectin binding site with bound perdeuterated L-fucose

(A) Electron and neutron density around perdeuterated fucose. Three different views of perdeuterated L-fucose (gray sticks) in the binding site II of the D-PLL/Fuc-

d12 complex (only b configuration is displayed for the O1 atom). Deuterium atoms are colored yellow. The 2mFo � DFc neutron scattering length density (green

mesh) is contoured at 1s and the 2mFo � DFc electron density (blue) is contoured at 2s level.

(B) Hydrogen-bonding network around the fucose-d12 molecule in site II. The 2mFo�DFc neutron scattering length density (green mesh) is shown at a 1s counter

level. The L-fucose is shown as thick gray sticks and the protein is shown as thin cyan sticks. Deuterium atoms are shown as yellow sticks. Hydrogen bonds are

shown as magenta dashed lines.

(C) View rotated by 180� around the axis perpendicular to the panel to highlight the CD-p interactions between the nonpolar face of the fucose and the aromatic

amino acids in site II. CD-p dispersion interactions are shown as orange dashed lines with distances (Å) betweenC andD and the benzene/pyrrole ring centroid of

the relevant tryptophan residue.
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may avoid artifacts caused during cryo-cooling of protein crys-

tals as observed by others (Maeki et al., 2020).

The RT X-ray/neutron structure of the perdeuterated complex

deciphered the hydrogen bond network involved in the fucose-

binding sites, with clear directionalities of fucose hydroxyl

groups observed in the neutron map. Fuc-OD4 is the key fucose

hydroxyl group in the PLL sugar recognition as it makes two

strong and well-defined hydrogen bonds with the protein back-

bone atoms in all binding sites. Fucose is further stabilized by

another hydrogen bond between Fuc-OD3 and a polar side chain

in sites II and III, while in sites IV and VII amino acids in this po-

sition have nonpolar character, which precludes formation of

this hydrogen bond. This is consistent with the neutron map

quality that is of lower quality in binding site VII.

Moreover, deuterium atoms of the perdeuterated L-fucopyra-

nose ring can be seen clearly in the neutron density. This is due to

the contribution of the deuterium scatterers with a positive

neutron scattering length so that the positions of all deuterium

atoms can be unambiguously determined. To date, only a couple

of neutron structures have used perdeuterated monosaccha-

rides, which were all chemically synthetized (Kovalevsky et al.,

2008; Langan et al., 2014). In our study, we used a perdeuterated

sugar produced via biosynthetic pathways in glyco-engineered

E. coli bacteria that was reported recently (Gajdos et al., 2020).

The use of hydrogenated sugars can lead to cancellation effects

in the neutron maps, mainly around CH2 groups, which might

make interpretation of maps challenging. Here, no cancellation

effects were observed and a strong peak of the fucose methyl

group could be clearly seen in the neutron scattering length den-

sity map. The fucose methine and methyl groups at C3-C5 and

C6, respectively, are involved in the CD/p interactions with the

tryptophan side chains. The average distances between the

deuterium atom and the ring centroid of the relevant tryptophan

residue are in the range 2.62–3.49 Å, which is in agreement with

the recently published analysis of CH-p interactions based on

the 3D structures of protein-carbohydrate complexes deposited

in the PDB (Houser et al., 2017, 2020). Experimentally deter-

mined structures of CH-p dispersion interactions are necessary

for a better understanding of the nature and physics behind the

dispersion forces involved in the protein-carbohydrate interac-

tions. These can be used in the quantum chemical calculations

of interaction energies, which could eventually improve struc-

ture-based drug design of new inhibitors.

Interestingly, in the RT X-ray/neutron structure of the unbound

PLL lectin, three water molecules were observed at the positions

of fucose O4, C5, and C6 atoms. The strongest neutron peak

was for the water located on the position of Fuc-OD4, which is

the most ordered water molecule in all binding sites. The other

two waters seem to be less coordinated with only one hydrogen

bond to the protein. It is possible that these water molecules

Table 4. Experimentally determined geometrical parameters of CD-p interactions between perdeuterated L-fucose and aromatic

amino acids in the binding sites of the perdeuterated PLL lectin based on the X-ray/neutron jointly refined crystal structure

Binding site CDn

d(Cn-p) (Å) d(Dn-p) (Å) :(Cn-Dn-p) (�)

Benzene Pyrrole Benzene Pyrrole Benzene Pyrrole

II

Trp99/Trp114*

3 4.09 4.42 3.34 4.07 135.3 104.5

4 4.03 3.72 3.48 2.85 118.1 150.1

5 4.10 4.00 3.35 3.57 136.3 109.8

6 4.97

4.93*

4.34

3.95*

4.78

4.15*

4.15

3.27*

95.4

139.0*

95.0

128.2*

III

Trp147/Trp162*

3 3.70 4.25 2.95 3.93 134.6 102.4

4 3.65 3.53 3.10 2.62 117.6 156.5

5 3.83 3.97 3.15 3.69 128.4 99.5

6 4.62

3.85*

4.18

4.31*

4.32

2.97*

3.49

3.36*

101.7

151.3*

129.6

166.3*

VII

Trp338/Trp354*

3 4.03 4.11 3.14 3.33 153.6 138.9

4 4.46 4.01 4.27 3.37 95.3 125.2

5 4.23 4.08 3.36 3.31 150.2 138.4

6 5.32

4.68*

4.81

3.71*

5.13

3.84*

4.58

3.00*

96.0

146.7*

98.0

130.8*

Distances d(Cn-p) and d(Dn-p) are measured from the carbon and deuterium atom, respectively, to the geometrical center of either the benzene or

pyrrole aromatic rings of the tryptophan residue. Parameter :(Cn-Dn-p) is defined as an angle formed by carbon-deuterium-p center of the aro-

matic ring.

Table 3. Measured distances and angles of hydrogen bonding

interactions between perdeuterated L-fucose and PLL lectin

based on the jointly refined X-ray/neutron crystal structure (D-

PLL/Fuc-d12)

Site Donor Acceptor Distance (Å) Angle (�)

II Fuc-O4D Val72-O 2.06 129.7

Thr94-ND Fuc-O4 2.02 158.3

Fuc-O3D Thr94-OG1 1.94 153.2

W309-OD Fuc-bO1 1.62 163.5

III Fuc-O4D Gly120-O 1.88 145.8

Ser142-ND Fuc-O4 2.05 166.8

Fuc-O3D Ser142-OG 2.13 129.1

Gly120-ND Fuc-O5 2.21 144.6

VII Fuc-O4D Ile311-O 1.95 165.7

Leu333-ND Fuc-O4 2.16 166.0
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interact with tryptophan residues using their O-H bonds or lone-

pairs of electrons as described by NMR, molecular dynamics

simulations, and quantum mechanics calculations (Durec et al.,

2018; �Spa�cková et al., 2018).

CONCLUSION

In this study, we reported two X-ray/neutron jointly refined struc-

tures of PLL lectin in apo form and in complexwith perdeuterated

L-fucose. The results show that NMX is a powerful technique for

studying lectin-carbohydrate interactions since it can help

resolve the complete hydrogen network in the ligand-binding

sites as well as the directionality of water molecules involved in

binding. We also described CD-p interactions that are crucial

for the fucose specificity in the PLL lectin; this could be directly

observed and their distances could be measured from the

neutron structure. Finally, we have also observed an additional

fucose-binding site from our X-ray structures showing that the

number of PLL active sites is 4 per monomer and 16 per

tetramer.
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Kent, B., Hauß, T., Demé, B., Cristiglio, V., Darwish, T., Hunt, T., Bryant, G., and

Garvey, C.J. (2015). Direct comparison of disaccharide interaction with lipid

membranes at reduced hydrations. Langmuir 31, 9134–9141.

Koruza, K., Mahon, B.P., Blakeley, M.P., Ostermann, A., Schrader, T.E.,

McKenna, R., Knecht, W., and Fisher, S.Z. (2019). Using neutron crystallog-

raphy to elucidate the basis of selective inhibition of carbonic anhydrase by

saccharin and a derivative. J. Struct. Biol. 205, 147–154.

Kovalevsky, A.Y., Katz, A.K., Carrell, H.L., Hanson, L., Mustyakimov, M., Zoe

Fisher, S., Coates, L., Schoenborn, B.P., Bunick, G.J., Glusker, J.P., et al.

(2008). Hydrogen location in stages of an enzyme-catalyzed reaction: time-

of-flight neutron structure of D-xylose isomerase with bound D-xylulose.

Biochemistry 47, 7595–7597.

Kovalevsky, A.Y., Hanson, L., Fisher, S.Z., Mustyakimov, M., Mason, S.A.,

Trevor Forsyth, V., Blakeley, M.P., Keen, D.A., Wagner, T., Carrell, H.L.,

et al. (2010). Metal ion roles and the movement of hydrogen during reaction

catalyzed by D-xylose isomerase: a joint X-ray and neutron diffraction study.

Structure 18, 688–699.
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(2016). A novel fucose-binding lectin from Photorhabdus luminescens (PLL)

with an unusual heptabladed b-propeller tetrameric structure. J. Biol. Chem.

291, 25032–25049.

Langan, P., Sangha, A.K., Wymore, T., Parks, J.M., Yang, Z.K., Hanson, B.L.,

Fisher, Z., Mason, S.A., Blakeley, M.P., Forsyth, V.T., et al. (2014). L-Arabinose

binding, isomerization, and epimerization by D-xylose isomerase: X-ray/

neutron crystallographic and molecular simulation study. Structure 22,

1287–1300.

ll
OPEN ACCESS Article

10 Structure 29, 1–11, July 1, 2021

Please cite this article in press as: Gajdos et al., Visualization of hydrogen atoms in a perdeuterated lectin-fucose complex reveals key details of pro-
tein-carbohydrate interactions, Structure (2021), https://doi.org/10.1016/j.str.2021.03.003

http://refhub.elsevier.com/S0969-2126(21)00076-9/sref2
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref2
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref3
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref3
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref3
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref3
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref3
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref3
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref3
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref4
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref4
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref4
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref5
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref5
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref6
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref6
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref6
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref6
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref6
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref7
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref7
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref7
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref8
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref8
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref8
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref9
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref9
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref9
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref10
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref10
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref10
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref10
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref11
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref11
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref11
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref12
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref12
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref13
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref13
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref13
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref13
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref14
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref14
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref15
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref15
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref15
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref15
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref15
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref15
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref15
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref15
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref16
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref16
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref16
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref16
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref17
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref17
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref17
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref17
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref17
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref17
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref18
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref18
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref19
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref19
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref19
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref20
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref20
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref21
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref21
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref22
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref22
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref22
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref22
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref22
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref23
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref23
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref23
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref23
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref23
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref24
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref24
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref24
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref24
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref24
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref24
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref24
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref24
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref25
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref25
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref25
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref26
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref26
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref26
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref26
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref27
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref27
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref27
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref27
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref28
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref28
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref28
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref28
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref29
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref29
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref29
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref30
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref30
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref30
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref31
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref31
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref31
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref31
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref32
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref33
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref33
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref33
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref34
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref34
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref34
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref35
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref35
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref35
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref35
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref36
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref36
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref36
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref36
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref36
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref37
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref37
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref37
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref37
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref37
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref38
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref38
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref38
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref38
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref38
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref38
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref39
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref39
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref39
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref39
http://refhub.elsevier.com/S0969-2126(21)00076-9/sref39


Lis, H., and Sharon, N. (1998). Lectins: carbohydrate-specific proteins that

mediate cellular recognition. Chem. Rev. 98, 637–674.

Machado, R.A.R.,W€uthrich, D., Kuhnert, P., Arce, C.C.M., Thönen, L., Ruiz, C.,

Zhang, X., Robert, C.A.M., Karimi, J., Kamali, S., et al. (2018). Whole-genome-

based revisit of Photorhabdus phylogeny: proposal for the elevation of most

Photorhabdus subspecies to the species level and description of one novel

species Photorhabdus bodei sp. nov., and one novel subspecies

Photorhabdus laumondii subsp. clarkei subsp. nov. Int. J. Syst. Evol.

Microbiol. 68, 2664–2681.

Maeki, M., Ito, S., Takeda, R., Ueno, G., Ishida, A., Tani, H., Yamamoto, M.,

and Tokeshi, M. (2020). Room-temperature crystallography using a microflui-

dic protein crystal array device and its application to protein-ligand complex

structure analysis. Chem. Sci. 11, 9072–9087.

Manzoni, F., Saraboji, K., Sprenger, J., Kumar, R., Noresson, A.L., Nilsson,

U.J., Leffler, H., Fisher, S.Z., Schrader, T.E., Ostermann, A., et al. (2016).

Perdeuteration, crystallization, data collection and comparison of five neutron

diffraction data sets of complexes of human galectin-3C. Acta Crystallogr.

Sect. D Struct. Biol. 72, 1194–1202.

Manzoni, F., Wallerstein, J., Schrader, T.E., Ostermann, A., Coates, L., Akke,

M., Blakeley, M.P., Oksanen, E., and Logan, D.T. (2018). Elucidation of

hydrogen bonding patterns in ligand-free, lactose- and glycerol-bound galec-

tin-3C by neutron crystallography to guide drug design. J. Med. Chem. 61,

4412–4420.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C.,

and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr.

40, 658–674.

Meilleur, F., Weiss, K.L., and Myles, D.A.A. (2009). Deuterium labeling for

neutron structure-function-dynamics analysis. Methods Mol. Biol. 544,

281–292.

Moonens, K., and Remaut, H. (2017). Evolution and structural dynamics of

bacterial glycan binding adhesins. Curr. Opin. Struct. Biol. 44, 48–58.

Moriarty, N.W., Grosse-Kunstleve, R.W., and Adams, P.D. (2009). Electronic

ligand builder and optimization workbench (eLBOW): a tool for ligand coordi-

nate and restraint generation. Acta Crystallogr. Sect. D Biol. Crystallogr. 65,

1074–1080.

Mousavifar, L., Touaibia, M., and Roy, R. (2018). Development of mannopyra-

noside therapeutics against adherent-invasive Escherichia coli infections. Acc.

Chem. Res. 51, 2937–2948.

Niimura, N., Minezaki, Y., Nonaka, T., Castagna, J.C., Cipriani, F., Høghøj, P.,

Lehmann, M.S., and Wilkinson, C. (1997). Neutron Laue diffractometry with an

imaging plate provides an effective data collection regime for neutron protein

crystallography. Nat. Struct. Biol. 4, 909–914.

O’Dell, W.B., Agarwal, P.K., and Meilleur, F. (2017). Oxygen activation at the

active site of a fungal lytic polysaccharide monooxygenase. Angew. Chem.

Int. Ed. Engl. 56, 767–770.

Regaiolo, A., Dominelli, N., Andersen, K., and Heermann, R. (2020). The

biocontrol agent and insect pathogen Photorhabdus luminescens interacts

with plant roots. Appl. Env. Microb. 86, e00891–20.

Ryu, K.S., Kim, C., Park, C., and Choi, B.S. (2004). NMR analysis of enzyme-

catalyzed and free-equilibrium mutarotation kinetics of monosaccharides.

J. Am. Chem. Soc. 126, 9180–9181.

Sawama, Y., Yabe, Y., Iwata, H., Fujiwara, Y., Monguchi, Y., and Sajiki, H.

(2012). Stereo- and regioselective direct multi-deuterium-labeling methods

for sugars. Chemistry 18, 16436–16442.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anne Im-

berty (anne.imberty@cermav.cnrs.fr).

Materials availability
This study did not generate new unique reagent.

Data and code availability
Model coordinates and experimental data have been deposited in the Protein Data Bank under PDB accession codes for jointly

refined X-ray/neutron structures PDB: 7BBI for H/D-exchanged apo PLL structure, PDB: 7BBC for the D-PLL/Fuc-d12 complex. In

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli BL21(DE3) Invitrogen / Life technologies Cat#C600003

Chemicals, Peptides, and Recombinant Proteins

L-fucose Carbosynth Cat#MF06710

CAS: 2438-80-4

Perdeuterated L-Fucose (Gajdos et al., 2020) N/A

Recombinant PLL (Kumar et al., 2016) N/A

Deuterated recombinant PLL This paper N/A

Deposited Data

X-ray/neutron RT H/D-exchanged apo PLL This paper PDB: 7BBI

X-ray/neutron RT D-PLL/Fuc-d12 This paper PDB: 7BBC

X-ray RT D-PLL apo This paper PDB: 7B7E

X-ray RT H/D-exchanged PLL/H-fucose This paper PDB: 7B7F

X-ray RT D-PLL/H-fucose This paper PDB: 7B7C

X-ray 100 K D-PLL/H-fucose This paper PDB: 7BB4

Coordinates of rPLL (Kumar et al., 2016) PDB: 5C9O

Coordinates of rPLL in the presence of L-

fucose

(Kumar et al., 2016) PDB: 5C9P

Recombinant DNA

Plasmid pET29a Novagen Cat#69871

Plasmid pET29a-pll (Kumar et al., 2016) N/A

Software and Algorithms

XDS (Kabsch, 2010) http://www.xds.mpimf-heidelberg.mpg.de/

Phenix 1.16.3 (Adams et al., 2010) https://www.phenix-online.org/

CCP4 (Winn et al., 2011) http://www.ccp4.ac.uk

Coot (Emsley et al., 2010) https://bernhardcl.github.io/coot

Molprobity (Williams et al., 2018) http://molprobity.biochem.duke.edu/

Pymol 2.3.2 Schrodinger, LLC https://pymol.org/2/

iMosflm (Battye et al., 2011) http://www.ccp4.ac.uk

LAUEGEN (Campbell et al., 1998) https://web.archive.org/web/

20001024010254/http://www.dl.ac.uk/

SRS/PX/jwc_laue/laue_top.html

LSCALE (Arzt et al., 1999) https://web.archive.org/web/

20001024010254/http://www.dl.ac.uk/

SRS/PX/jwc_laue/laue_top.html
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addition, the following X-ray structures have also been deposited: PDB: 7B7F for H/D-PLL complexed with H-fucose at room tem-

perature, PDB: 7B7E for D-PLL apo at room temperature, PDB: 7B7C for D-PLL complexed with H-fucose at room temperature, and

PDB: 7BB4 for D-PLL complexed with H-fucose at 100K.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial cell culture
Both hydrogenated and perdeuterated PLL lectin were expressed in Escherichia coliBL21(DE3) cells using pET-29a-pll (Kumar et al.,

2016) under kanamycin selection. All culture media were supplemented with 35 mg mL-1 kanamycin and grown at 37�C with shaking

at 180 rpm.

METHOD DETAILS

Protein expression
The hydrogenated protein was produced in LB medium as described previously (Kumar et al., 2016). Briefly, E. coli BL21(DE3) cells

containing pET29a-pll plasmid were cultured in LB medium with 35 mg mL-1 kanamycin at 37�C until OD600 of 0.6-0.8. The protein

expression was induced with IPTG (0.2 mM) and the cells were grown at 25�C for 12 h. The cells were harvested (8000 rpm at

4�C for 1 h) and the cell paste was frozen at -80�C.

Adaptation to D2O and deuterated glycerol-d8

The E. coli cells containing pET29a-pll plasmid (Kumar et al., 2016) were adapted to fully deuterated Enfors minimal medium with a

define composition as previously described (Artero et al., 2005; Haertlein et al., 2016) with the following composition: 6.86 g L-1

(NH4)2SO4, 1.56 g L-1 KH2PO4, 6.48 g L-1 Na2HPO4∙2H2O, 0.49 g L-1 (NH4)2HC6H5O7 (diammonium hydrogen citrate), 0.25 g L-1

MgSO4∙7H2O, with 1.0 mL L-1 of trace metal stock solution (0.5 g L-1 CaCl2∙2H2O, 16.7 g L-1 FeCl3∙6H2O, 0.18 g L-1 ZnSO4∙7H2O,

0.16 g L-1 CuSO4∙5H2O, 0.15 g L-1 MnSO4∙4H2O, 0.18 g L-1 CoCl2∙6H2O, 20.1 g L-1 EDTA), 5 g L-1 glycerol-d8. A single colony of

E. coli containing pET29a-pll plasmid grown overnight on an LB agar plate supplemented with kanamycin was used to inoculate

15 mL of hydrogenated Enfors minimal medium and was grown overnight at 37�C. The culture was then used to inoculate 15 mL

of 100% D2O Enfors minimal medium (with deuterated glycerol-d8) at OD600 of 0.1 and was grown overnight at 37�C. This passaging
step was repeated five times until the doubling time for E. coli reached values similar to those for hydrogenated cultures.

Deuterated fed-batch fermentation
A deuterium-adapted preculture of 150 mL was used to inoculate 1.2 L of the fully deuterated Enfors minimal medium described

above in a 3 L bioreactor (Infors AG, Switzerland) used for fed-batch fermentation. The pD of the culture medium was maintained

at 7.2 by addition of 4% NaOD and the temperature at 30�C. After exhaustion of glycerol-d8 (Euriso-top, France) from the culture

medium, the fed-batch phase was initiated by continuous exponential feeding with additional 30 g of glycerol-d8. PLL expression

was induced with 1 mM isopropyl-b-D-thiogalactopyranoside (IPTG) at OD600 of 16 and harvested after 19 h induction by centrifu-

gation (8000 g for 1 h at 4�C). The cell paste was frozen at -80�C for long-term storage. The cell paste yield was 66 gwet weight from a

1.8-liter culture.

Protein purification
Both hydrogenated and perdeuterated PLL were purified the same way using Ni2+ affinity chromatography (AKTA Prime) and hydro-

genated buffers. The cell paste was resuspended in lysis buffer (20 mM potassium phosphate pH 7.5, 2 mM trehalose) in the pres-

ence of EDTA-free protease inhibitor cocktail (Roche, Mannheim, Germany). The cells were lysed by cell disruption at a pressure of

1.8 Kbar (Constant Systems Ltd, UK). After centrifugation (24 000 g for 40 min at 4�C), the supernatant was filtered (0.45 mm) and the

cleared cell lysate was loaded onto a His Trap FF column (GE Healthcare Life Sciences (now Cytiva), USA) pre-equilibrated with the

lysis buffer. Protein was eluted using phosphate buffer containing 100 mM imidazole. The purity of the protein was verified by 12%

Tris-Tricine SDS-PAGE stained with Coomassie Blue. The protein MW estimated from SDS-PAGE was about 40 kDa for both pro-

teins, in agreement with the theoretical MWof 41.9 kDa. Fractions containing pure protein were pooled together and dialyzed against

the lysis buffer and concentrated using 30-kDaMWcut-off centrifugal filter units (Amicon, MerckMillipore). The concentrated protein

was flash-frozen in small aliquots of 200 mL in liquid nitrogen for long-term storage. The typical yield of perdeuterated PLL lectin was

about 4 mg of protein per 1 g of wet cell paste.

Production and purification of Fuc-d12

The fully-deuterated fucose (Fuc-d12) was produced using glyco-engineered bacteria in a bioreactor as described previously (Gajdos

et al. 2020). The secreted fully-deuterated fucose was further purified and characterised before being used for the crystallisation ex-

periments described in this work.
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Crystallization
Crystallization experiments were carried out at the High Throughput Crystallisation Laboratory (HTX Lab) of the EMBL Grenoble

(Dimasi et al., 2007). Both hydrogenated and deuterated PLL lectin were crystallized using vapour-diffusion sitting drop method in

24-well crystallization plates (Hampton Research, USA) in the following three conditions: 0.1 M sodium acetate, pD 4.6, 8% (w/v)

polyethylene glycol (PEG) 4000; 0.1 M Tris-DCl, pD 8.5, 6-8% (w/v) PEG 8 000; 0.05-0.4 M sodium-potassium tartrate. The final vol-

ume of the drops was 8-16 mL, the protein : reservoir ratio was 3:1 and the volume of the reservoir solution was 0.5 mL. Crystallization

plates were incubated at 18�C. Hydrogenated crystals used for neutron diffraction experiments were H/D-exchanged by vapour

diffusion. Reservoir solution was replaced by deuterated solution in a stepwise manner starting from 25% to 100% deuterated so-

lution over a period of two weeks.

Crystals of deuterated PLL lectin in complex with deuterated fucose-d12 were obtained in the following conditions: 0.05-0.1 M so-

dium-potassium tartrate. Crystals were either co-crystallized or soaked with Fuc-d12 to a final concentration of 50 mM. All solutions

were dissolved in D2O. A macro-seeding technique was applied to grow large crystals for neutron diffraction experiments (Thaller

et al., 1981). Crystals of 0.05-0.1 mm3 were harvested and introduced into pre-equilibrated drops containing the protein solution.

Crystals were growing for several weeks. In order to avoid damaging the crystals by repeated seeding, crystals were regularly fed

with fresh protein solution. The lid was open once per week and 3-4 mL of a pre-equilibrated protein solution was added onto the

drop. Final volumes of crystals obtained using this method were 0.5-0.7 mm3. To exchange all labile hydrogens that might have

been back-exchanged when the sitting-drop lid was open, the reservoir solution was replaced for freshly-prepared deuterated so-

lution three times prior to crystal mounting in quartz capillaries.

Neutron data collection and processing
Crystals of PLL lectin were mounted either in thin (0.01 mm thickness, Hampton Research, US) or thick-walled quartz capillaries

(0.2 mm thickness, Vitrocom from CM Scientific, UK) with inner diameter 1.5-2.0 mm and sealed with wax in preparation for data

collection at room-temperature using the LADI-III diffractometer at the Institut Laue-Langevin (Blakeley et al., 2010). Using a neutron

wavelength range from 3.1-4.1 Å, neutron diffraction data extending to 2.2 Å resolution were collected for D-PLL complexed with

Fuc-d12 and for H/D-exchanged apo PLL. The neutron diffraction data for the D-PLL/Fuc-d12 complex were collected from a single

crystal with volume of 0.5 mm3 using 18h exposures. Nineteen images were collected from two different crystal orientations. The

neutron diffraction data for H/D-exchanged apo PLLwere collected from two crystals with volumes of�0.7mm3 that had been grown

in the same crystallization condition. Ten images (each of 18h) were collected in total from the two crystals. Neutron data were in-

dexed and integrated using LAUEGEN (Campbell et al., 1998), wavelength normalized using LSCALE (Arzt et al., 1999) and merged

using SCALA (Evans, 2006). Complete data collection and structure refinement statistics are presented in Table S1.

X-ray data collection and processing
Room temperature (RT) X-ray datasets were collected for both crystals from which the neutron data were collected. For the H/D-

exchanged apo PLL crystal, the data images were recorded on the BM30A (newly BM07) beamline at the ESRF (Grenoble, France).

The same beamline was used to collect RT datasets of H/D-PLL-H-fucose, D-PLL apo and D-PLL-H-fucose crystals (hydrogenated

commercial L-fucose was used for the crystals). The collected data were processed using XDS (Kabsch, 2010), scaled andmerged in

AIMLESS (Evans and Murshudov, 2013) and converted to structure factors using TRUNCATE from the CCP4 program suite (Winn

et al., 2011). For the D-PLL-Fuc-d12 crystal, the RT X-ray datasets were recorded on the GeniX 3D Cu High Flux diffractometer (Xen-

ocs) at the IBS, Grenoble, France. Data were integrated using iMOSFLM (Battye et al., 2011), scaled andmerged using AIMLESS and

converted to structure factors using TRUNCATE from the CCP4 program suite.

To collect the 100 K X-ray data, crystals were cryo-protected by soaking in 30% (v/v) glycerol in a crystallization solution for a time

as short as possible and were subsequently cryo-cooled at 100 K in liquid nitrogen. Datasets from crystals of D-PLL/H-fucose com-

plex were collected on the ID23-1 beamline at the ESRF equipped with the PILATUS 6M detector. The data were processed via XIA2

pipeline. Complete data collection and structure refinement statistics are presented in Table S2.

Phasing and Structure refinement
Monomeric structure of the recombinant PLL lectin (PDB: 5C9O) stripped of water molecules was used as the initial model for initial

phasing using molecular replacement (McCoy et al., 2007). Crystallographic refinement was carried out with phenix.refine (Afonine

et al., 2012) from the PHENIX package (Adams et al., 2010) altered with a manual model building and model adjustments using Coot

(Emsley et al., 2010). Water molecules were introduced automatically using phenix.refine and inspected manually. Ligand molecules

were introduced manually in Coot.

The joint x-ray/neutron refinement was carried out after the satisfactory R factors were achieved. The final X-ray and neutron

Rwork/Rfree values for the H/D-exchanged apo PLL were 13.5%/15.6% and 21.5%/24.0% respectively and for the D-PLL/Fuc-

d12 complex were 12.1%/14.0% and 19.2%/22.3% respectively. The ReadySet utility in PHENIX was used to introduce hydrogen

and deuterium atoms at appropriate positions in the protein and ligand molecules. The eLBOW (Moriarty et al., 2009) tool in

PHENIX was used to generate restraint files for the hydrogenated and deuterated fucose molecules. Molecular figures were pre-

pared in PyMOL (Schrödinger, Inc.). Complete data collection and structure refinement statistics are presented in Tables 1, S1

and S2.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Processing of X-ray and neutron data was performed as described in theMethod Details. Model refinement was carried out in Phenix

using phenix.refine (Afonine et al., 2012). All software used is listed in the Key resources table. Data processing, refinement, and vali-

dation statistics are summarized in Tables 1, S1 and S2. Structure validation was performed on the deposited atomic models using

Molprobity (Williams et al., 2018).
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