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Abstract

Membrane proteins have a range of crucial biological functions and are the target of about

60% of all prescribed drugs. For most studies, they need to be extracted out of the lipid-

bilayer, e.g. by detergent solubilisation, leading to the loss of native lipids, which may disturb

important protein-lipid/bilayer interactions and thus functional and structural integrity. Relipi-

dation of membrane proteins has proven extremely successful for studying challenging tar-

gets, but the identification of suitable lipids can be expensive and laborious. Therefore, we

developed a screen to aid the high-throughput identification of beneficial lipids. The screen

covers a large lipid space and was designed to be suitable for a range of stability assess-

ment methods. Here, we demonstrate its use as a tool for identifying stabilising lipids for

three membrane proteins: a bacterial pyrophosphatase (Tm-PPase), a fungal purine trans-

porter (UapA) and a human GPCR (A2AR). A2AR is stabilised by cholesteryl hemisuccinate,

a lipid well known to stabilise GPCRs, validating the approach. Additionally, our screen also

identified a range of new lipids which stabilised our test proteins, providing a starting point

for further investigation and demonstrating its value as a novel tool for membrane protein

research. The pre-dispensed screen will be made commercially available to the scientific

community in future and has a number of potential applications in the field.

1. Introduction

Integral membrane proteins are intimately associated with biological, lipid-based membranes.

They are involved in a variety of cellular processes crucial for organism survival such as cataly-

sis, signal transduction and transport of ions or small biomolecules in and out of the cell. Due
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to their fundamental biological functions membrane proteins are major drug targets account-

ing for up to 60% of approved drugs despite making up just 20–30% of the proteome [1]. G-

protein coupled receptors (GPCRs) alone are targeted by approximately 35% of all approved

drugs [2]. Rational drug discovery pipelines are much more efficient and economical than clas-

sical screening approaches but rely heavily on structural data [3]. However, membrane pro-

teins account for only ~3% of the deposited structures in the PDB [4]. Structural studies of

integral membrane proteins are still very challenging as the proteins must be extracted in a

structurally and functionally relevant state from their natural environment, the lipid bilayer,

and bottlenecks occur at every step from expression to structure determination [5].

The use of detergents is arguably the most common and successful approach for integral

membrane protein extraction and solubilisation, although it has some limitations. The inher-

ent removal of native lipids and reconstitution in detergent micelles during this process dis-

rupts protein-lipid interactions that are important for protein stability, organisation and

function [6,7]. The physicochemical properties of detergent micelles differ substantially from

lipid bilayers, making them a poor membrane mimic [8]. For example, both curvature [9] and

lateral pressure [10] provided by the membrane environment are important for protein struc-

ture and function. Similarly, lateral tension also affects membrane protein function [11]. Selec-

tive protein-lipid interactions have also been extensively documented as playing crucial roles.

Phospholipids binding at the dimer interface are crucial for maintenance of the functional,

quaternary state of the eukaryotic purine transporter, UapA [12]. Cardiolipin (CL) has been

shown to be crucial for dimerisation of the bacterial leucine transporter LeuT [13]; cholesterol

(CHL) is well known to affect the function and stability of GPCRs [14]; and there is emerging

evidence for the essential roles that phospholipids play in coupling of receptors to effector mol-

ecules [15].

To compensate for decreased protein stability upon solubilisation into detergent, one can

screen different detergents and/or additives, or engineer more robust protein variants [16–19].

Improved stability conferred by amino acid substitutions often comes at the cost of reduced

activity as protein motion is impeded by rigidifying flexible regions or locking the protein in a

particular conformational state [16–19]. Although this may benefit structural characterisation,

it hampers functional studies and may call into question the physiological relevance of study

outcomes. Alternatively, detergent-free solubilisation strategies such as amphipols [20],

bicelles [21], liposomes [22], nanodiscs [23], peptidiscs [24] and styrene-maleic acid copoly-

mer lipid particles (SMALPs) [25] can be tried. All of these aim to better mimic the native lipid

bilayer composition and/or its physicochemical properties. Nevertheless, most solubilisation

platforms still require an intermediate detergent extraction step, resulting in the loss of most if

not all native lipids [20–24]. Only SMALPs extract membrane proteins directly out of the lipid

bilayer while preserving the surrounding native lipid environment, but their use in down-

stream experiments is limited due to the formation of heterologous complexes that exhibit sen-

sitivity to low pH (< 6.5) and divalent cations (> 5 mM) [25,26]. A simple and potentially

effective way to restore structural integrity and protein function is the relipidation of integral

membrane proteins after detergent extraction. Such an approach was essential for the struc-

tural characterisation of a broad range of targets such as electron transport complexes [27], ion

pumps [28], ion channels [29], transporters [30] and GPCRs [31]. Unfortunately, screening is

expensive and laborious, since it is difficult to know which lipids are critical for an individual

membrane protein.

Testing the effect of lipids on protein stability, function or crystal growth only requires a

few hundred micrograms, which is much less than the prevailing commercially available ali-

quot sizes. We have therefore designed a multi-purpose microplate screen containing suffi-

cient amounts of 31 different lipids or lipid mixtures to help the scientific community sample
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a broad range of lipids at an affordable cost and with minimal effort. It is, as far as aware, the

first such screen. Here, we report the application of this lipid screen to identify stabilising lipids

of three different integral-membrane proteins by differential scanning fluorimetry (DSF).

Our test proteins are a membrane-bound pyrophosphatase (M-PPase) from the thermo-

philic bacterium Thermotoga maritima (Tm-PPase), a eukaryotic purine transporter from

Aspergillus nidulans (UapA) and a member of the GPCR family, the human A2A receptor

(A2AR). We chose these proteins as they were under investigation in our laboratories; they can

be expressed in suitable amounts and, most importantly, they are a test set of challenging

membrane proteins. They have different folds (from 7 to 16 transmembrane helices), different

topologies and different modes of action [32–35]. M-PPases utilise the pyrophosphate pool to

generate electrochemical gradients across membranes in plants, prokaryotes and protist para-

sites, thereby facilitating their survival during low-energy periods, high-stress conditions and

varying osmotic environments [36]. Their potential as drug targets to fight severe parasitic dis-

eases such as malaria, the African sleeping sickness, or toxoplasmosis is currently being investi-

gated [32]. Additionally, M-PPase overexpression in transgenic plants leads to improved

drought resistance and is a potential point of action to address worsening trends of global-

warming-induced crop loss, which poses a threat to the food supply of millions of people

[37,38]. UapA is a high affinity, high capacity symporter, responsible for the uptake of uric

acid-xanthine/H+ in Aspergillus nidulans [39]. It is the most extensively characterised member

of the Nucleobase-Ascorbate Transporter (NAT) family, which includes proteins that trans-

port essential metabolites such as nucleobases in bacteria, plants and fungi and ascorbate (vita-

min C) in mammals [40]. UapA represents not only an important model protein to study the

members of the NAT family, but also a promising drug target for Aspergillosis, a fungal lung

infection with high mortality rate in immunocompromised patients [33]. A2AR is one of four

human adenosine receptor subtypes (A1, A2A, A2B, A3), all of which belong to the family of

GPCRs [41]. It is expressed in numerous human tissues where it is involved in the regulation

of myocardial blood flow, has regulatory functions in the adaptive immune system and plays a

role in the regulation of dopamine and glutamate responses in the brain [41]. Because of its

involvement in various physiological and pathological processes, A2AR represents a very prom-

ising drug target, for example being investigated in inflammation-related disease such as

asthma [34], and neurodegenerative disease such as Parkinson’s disease [35].

2. Results

Rationale of the lipid screen

The lipidic environment of the biological membrane not only acts as the scaffold in which

membrane proteins are embedded but can also affect protein stability and correct folding as

well as oligomerisation and function. Often, choosing the best lipids and lipid concentration to

stabilise a specific membrane protein for functional or structural analysis relies on a trial and

error process and it can be challenging, expensive and time consuming. The lipid screen aims

to simplify this process and allow cost effective testing of a large lipid space. It was designed to

be a versatile tool for lipid screening and can be used for stability testing, functional assays and

structural characterisation for example via protein crystallisation using vapour diffusion or

high lipid-detergent (HiLiDe) methods [42].

The screen contains 23 unique lipids of synthetic and natural origin (Table 1), including a

range of different phospholipids which have been shown to co-purify and co-crystallise with

and have functional effects on a range of membrane proteins proteins (see references cited in

Table 1 for more details). We incorporated several lipid classes including
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Table 1. Lipid screen design containing 31 different lipids or lipid mixtures.

Well Lipid Abbreviation Amount Comment References

A1 1,2-Dioleoyl-sn-Glycero-

3-Phosphoethanolamine

DOPE 0.3 mg Phosphatidylethanolamine (PE) [43]

A2

A3

A4 1-Palmitoyl-2-Oleoyl-sn-Glycero-

3-Phosphoethanolamine

POPE 0.3 mg Phosphatidylethanolamine (PE) [12]

A5

A6

A7 1,2-Dipalmitoyl-sn-Glycero-

3-Phosphoethanolamine

DPPE 0.3 mg Phosphatidylethanolamine (PE) [43]

A8

A9

A10 1-Palmitoyl-2-Oleoyl-sn-Glycero-

3-Phosphocholine

POPC 0.3 mg Phosphatidylcholine (PC) [44]

A11

A12

B1 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine DOPC 0.3 mg Phosphatidylcholine (PC) [45]

B2

B3

B4 1,2-Dimyristoyl-sn-Glycero-

3-Phosphocholine

DMPC 0.3 mg Phosphatidylcholine (PC) [46]

B5

B6

B7 1,2-Dihexadecanoyl-sn-Glycero-

3-Phosphocholine

DPPC 0.3 mg Phosphatidylcholine (PC) [47]

B8

B9

B10 1-Myristoyl-2-Hydroxy-sn-Glycero-

3-Phosphocholine

LMPC 0.3 mg Phosphatidylcholine (PC) [48]

B11

B12

C1 1-Palmitoyl-2-Oleoyl-sn-Glycero-

3-Phosphoglycerol (sodium Salt)

POPG-Na 0.3 mg Phosphoglyceride (PG) [49]

C2

C3

C4 1,2-Dipalmitoyl-sn-Glycero-3-Phospho-1’-

rac-Glycerol (sodium salt)

DPPG-Na 0.3 mg Phosphoglyceride (PG) [49]

C5

C6

C7 1-Palmitoyl-2-Oleoyl-sn-Glycero-

3-Phospho-L-Serine (sodium salt)

POPS 0.3 mg Phosphatidylserine (PS) [50]

C8

C9

C10 1,2-Dioleoyl-sn-Glycero-3-Phospho-L-Serine

(sodium salt)

DOPS-Na 0.3 mg Phosphatidylserine (PS) -

C11

C12

D1 1,2-Didecanoyl-sn-Glycero-3-Phosphate

(sodium salt)

10:PA-Na 0.3 mg Phosphatic acid (PA) [51]

D2

D3

D4 1-Palmitoyl-2-Oleoyl-sn-Glycero-

3-Phosphate (sodium salt)

16:0–18:1 PA

(POPA)

0.3 mg Phosphatic acid (PA) -

D5

D6

D7 E. coli Polar Lipid Extract EPL 0.3 mg Mixture of PE (67%), PG (23.2%) and CA (9.8%) [52]

D8

D9

(Continued)
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Table 1. (Continued)

Well Lipid Abbreviation Amount Comment References

D10 Cholesteryl Hemisuccinate Tris Salt CHS 0.3 mg Sterol [53]

D11

D12

E1 Cholesterol CHL 0.3 mg Sterol [54]

E2

E3

E4 1’,3’-bis[1,2-dimyristoyl-sn-glycero-

3-phospho]-glycerol (sodium salt)

14:0 CL 0.3 mg Cardiolipin (CL) [13]

E5

E6

E7 1’,3’-bis[1,2-dioleoyl-sn-glycero-3-phospho]-

glycerol (sodium salt)

18:1 CL 0.3 mg Cardiolipin (CL) [13]

E8

E9

E10 Porcine Polar Brain Lipid Extract PBL 0.3 mg Mixture of PC (12.6%), PE (33.1%), PI (4.1%), PS (18.5%), PA

(0.8%) and unknown (30.9%)

[55]

E11

E12

F1 Egg Sphingomyelin (chicken) SM 0.3 mg Mixture of sphingomyelins (SM) with 16:0 SM (86%), 18:0 SM

(6%), 22:0 SM (3%), 24:1 SM (3%), unknown (2%)

[56]

F2

F3

F4 Monomyristolein 7.7MAG 0.3 mg Monoacylglycerol [57]

F5

F6

F7 Monoolein 9.9MAG 0.3 mg Monoacylglycerol [58]

F8

F9

F10 Lipid mix I POPC:POPG:

POPE (3:1:1)�
0.3 mg Used for structure solution of several ion channels [59–61]

F11

F12

G1 Lipid mix II POPC:POPS (4:1)� 0.3 mg Simple mimic of the membrane inner lipid leaflet -

G2

G3

G4 Lipid mix III POPG:POPE (3:1)� 0.3 mg Simple mimic of Gram-positive bacterial membranes -

G5

G6

G7 Lipid mix IV POPG:POPE (1:3)� 0.3 mg Simple mimic of Gram-negative bacterial membranes -

G8

G9

G10 Lipid mix V DMPC:CHL (2:1)� 0.3 mg Simple mimic of eukaryotic plasma membranes -

G11

G12

H1 Lipid mix VI POPC:CHL (5:1)� 0.3 mg Simple mimic of nerve cell membranes -

H2

H3

H4 Lipid mix VII CHL:POPC:SM

(1.8:1:1)�
0.3 mg Simple mimic of erythrocyte membranes -

H5

H6

(Continued)
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phosphatidylethanolamines (PEs), phosphatidylcholines (PCs), phosphoglycerides (PGs),

phosphatidylserines (PSs), phosphatidic acids (PAs), cardiolipins (CLs) and sphingolipids

(SLs).

CHL is known to associate with a range of mammalian membrane proteins in particular

GPCRs [14] and transporters [54,62,63]. The native cholesterol molecule is relatively insoluble

in aqueous solution, so researchers tend to use the more soluble salt, cholesterol hemisuccinate

(CHS) as an additive to protein solutions. We included both forms in our screen. CL is known

to form associations with a range of membrane proteins particularly respiratory complexes

[64] but also transporters [13]. Monoacylglycerols (MAGs) are widely used for lipidic cubic

phase (LCP) crystallisation [58,57]; we included a couple of examples of these molecules in our

initial screen as a means of assessing whether we were able to identify the best MAG for stabili-

sation and thus LCP crystallisation of our test proteins. We also included various lipid extracts

from natural sources as well as 8 unique defined lipid mixtures allowing a controlled, yet more

complex lipid environment more similar to eukaryotic and prokaryotic membranes. The lipids

were selected based on an extensive literature scan using the LipidMAPS database (https://

www.lipidmaps.org), which lists specific lipids bound to membrane proteins identified in

native mass spectrometry and lipidomics analysis, and the PDB database (https://www.rcsb.

org) to pinpoint the most frequent lipids found in protein structures. Additionally, material

and methods sections of selected structural biology research articles were studied to identify

the lipids and lipid mixtures commonly used in purification steps and crystallisation trials. We

also considered lipid cost and stability in our selection, for example no phosphatidylinositols

(PIs) have been included in order to keep the overall cost of the screen down.

Use of the lipid screen

The solubilisation of lipids in 3% detergent was incomplete using the protocol described above

as some wells showed remaining precipitate. Lipid solubilisation can be improved by increas-

ing the detergent concentration if this does not interfere with downstream processes. Alterna-

tively, more extensive solubilisation protocols with higher temperatures, addition of magnetic

stirring bars, longer incubation periods, or sonication can be used. However, for the identifica-

tion of stabilising lipids the exact final lipid concentration is irrelevant as long as sufficient

amounts of lipids are solubilised and, indeed, by Le Chateliers’ principle some of the precipi-

tated lipid may redissolve if the lipid is bound to the membrane protein introduced. The lipid

amount dispensed in the screen was therefore chosen to be suitable for a range of applications

for example HiLiDe crystallisation trials to provide a cost effective way of screening many dif-

ferent lipids (see Conclusion). Only one screen was used to assess the effect of lipids on protein

stability for all test proteins in triplicates following our protocol, further highlighting the cost

Table 1. (Continued)

Well Lipid Abbreviation Amount Comment References

H7 Lipid mix VIII POPC:POPE (1:1)� 0.3 mg Simple mimic of mitochondrial membranes -

H8

H9

H10 Blank Blank 0 mg Control -

H11

H12

� molar ratios.

https://doi.org/10.1371/journal.pone.0254118.t001
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effectiveness of our screen. In the next paragraph we report on the effects of the tested lipids

on protein stability, demonstrating sufficient solubilisation following our protocol for this test

purpose.

Effects of lipids on protein stability

The thermal denaturation of our test proteins was recorded by the change of the intrinsic fluo-

rescence at 330 nm and 350 nm caused by local changes of the tryptophan (and tyrosine) envi-

ronment during unfolding. The unfolding behaviour of relipidated protein was compared to a

reference sample solubilised in detergent (no lipids) by the means of the difference in the

apparent melting temperature (ΔTm) to assess the effect of different lipids in the lipid screen

on protein stability (Figs 1–3). The F330 and F350 signal recorded during the melting scans

showed a clear transition (unfolding) for A2AR at 43.3 ± 0.2˚C (Fig 1A and 1B) and for Tm-

PPase at 81.1 ± 0.3˚C (Fig 3A and 3B). The monitoring at two wavelength (330/350 nm) allows

the detection of emission peak shifts in addition to fluorescence intensity changes upon pro-

tein unfolding and fluorescence background becomes negligible when analysing the F350:F330

ratio. Therefore, even small differences in the local tryptophan/tyrosine environment that are

not detectable in single wavelength measurements can be resolved using data obtained at 330

Fig 1. Lipid screening of A2AR by nanoDSF. (a) F330 signal of the no lipids reference sample (black line) and a

representative set of stabilising lipids (coloured lines) during the melting scan. Grey lines show the fluorescence traces

of the other tested lipids. (b) First derivative of the F330 signal highlighting the fluorescence change indicative of

protein unfolding. The Tm can be determined at the curve peak, here shown for the no lipids reference sample as

dotted line. (c) ΔTm of detergent-solubilised to relipidated sample shown for all tested lipids, which are sorted and

colour coded according to their lipid class. Panel a-b show the traces of a representative nanoDSF scan. Panel c shows

the ΔTm and corresponding standard error of the mean (SEM) based on three technical repeats. The asterixis represent

the p-value (� = 0.0332, �� = 0.021, ��� = 0.002, ���� = 0.0001) obtained by a one-way ANOVA followed by a Dunnet

test to correct for multiple comparison in GraphPadPrism 7.

https://doi.org/10.1371/journal.pone.0254118.g001
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nm and 350 nm simultaneously. For UapA, the F350:F330 ratio was more informative than F330

or F350 signal alone and showed a clear transition at 46.3 ± 1.1˚C (Fig 2A and 2B).

MAG’s were the only lipid class consistently showing destabilising (or no) effects on protein

stability across all test proteins despite their success in the structure determination of mem-

brane proteins using LCP (Figs 1–3C). These lipids were specifically designed to form a highly

curved mesophase at a certain lipid to aqueous phase ratio [57,58]. The low concentration of

the MAGs used here is clearly not suitable for identification of suitable LCP matrices and will

be replaced in future versions of the screen with other molecules such as 10:0 PC and 18:0 PC,

which can be used to test the effect of different alkyl chain lengths and membrane curvature

on membrane proteins [65], to further widen the lipid space tested.

A2AR. The protein-lipid interplay has been extensively studied for GPCRs with CHL [14].

CHL binding is reported to lead to conformational stabilisation of several GPCRs [66–68].

Addition of the more water soluble analogue CHS was previously shown to improve A2AR sta-

bility and was crucial for purification and initial structure determination, which led to the

identification of three different cholesterol binding sites [53,69]. Due to the well documented

effects of CHL and CHS on GPCR stability, A2AR serves as a control protein to test the ability

of the lipid screen to identify stabilising lipids.

Fig 2. Lipid screening of UapA by nanoDSF. (a) F350:330 signal of the no lipids reference sample (black line) and a

representative set of stabilising lipids (coloured lines) during the melting scan. Grey lines show the fluorescence traces

of the other tested lipids. (b) First derivative of the F350:330 signal signal highlighting the fluorescence change indicative

of protein unfolding. The Tm can be determined at the curve peak, here shown for the no lipids reference sample as

dotted line. (c) ΔTm of detergent-solubilised to relipidated sample shown for all tested lipids, which are sorted and

colour coded according to their lipid class. Panel a-b show the traces of a representative nanoDSF scan. Panel c shows

the ΔTm and corresponding SEM based on three technical repeats. The asterixis represent the p-value (� = 0.0332, �� =

0.021, ��� = 0.002, ���� = 0.0001) obtained by a one-way ANOVA followed by a Dunnet test to correct for multiple

comparison in GraphPadPrism 7.

https://doi.org/10.1371/journal.pone.0254118.g002
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Ligand binding and high concentrations of NaCl were shown to further stabilise A2AR [53].

Here, A2AR was purified in the absence of CHS to test its effect on protein stability following

our protocol for high-throughput lipid screening using the lipid screen. As expected, CHS sta-

bilised the receptor with a ΔTm of +10.8 ± 0.2˚C (Fig 1C), in good agreement with previously

determined values [69]. The next best hit was 16:0–18:1 PA with a ΔTm of +5.8 ± 0.2˚C (Fig

1C). So far, no functional or thermostabilising effects have been reported for PA’s on A2AR.

Besides CHL, several ordered lipid chains most likely originating from the LCP were found in

A2AR crystal structures, of which some seem to form specific interactions [69]. Previously,

phospholipids have also been shown to occupy proposed cholesterol binding pockets [53].

More recent studies further imply a functional role of anionic phospholipids such as PIP2 in

receptor activation [15]. Phospholipids, particularly PA with a very small headgroup, might be

able to bind to these lipid binding pockets and thereby stabilise the receptor in one particular

conformation.

The addition of 50 μM of the A2AR antagonist, ZM241385 (ZMA) served as an assay con-

trol, conferring an increase in Tm of +5.2 ± 0.5˚C as expected (Fig 1C). This value is slightly

lower than previously reported [53], which is probably due to the different assay buffer compo-

sition used (no CHS but high salt and theophylline present).

Fig 3. Lipid screening of Tm-PPase by nanoDSF. (a) F330 signal of the no lipids reference sample (black line) and a

representative set of stabilising lipids (coloured lines) during the melting scan. Grey lines show the fluorescence traces

of the other tested lipids. (b) First derivative of the F330 signal highlighting the fluorescence change indicative of

protein unfolding. The Tm can be determined at the curve peak, here shown for the no lipids reference sample as

dotted line. (c) ΔTm of detergent-solubilised to relipidated sample shown for all tested lipids, which are sorted and

colour coded according to their lipid class. Panel a-b show the traces of a representative nanoDSF scan. Panel c shows

the ΔTm and corresponding SEM based on three technical repeats. The asterixis represent the p-value (� = 0.0332, �� =

0.021, ��� = 0.002, ���� = 0.0001) obtained by a one-way ANOVA followed by a Dunnet test to correct for multiple

comparison in GraphPadPrism 7.

https://doi.org/10.1371/journal.pone.0254118.g003
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UapA. Using the lipid screen, we identified previously unknown stabilising lipids for

UapA. However, their effect was less pronounced compared to the CHS and 16:0–18:1 stabili-

sation of A2AR. All PSs tested stabilised UapA, with POPS having the biggest effect (ΔTm: +-

5.1 ± 1.4˚C) (Fig 2C). Previous studies have indicated that UapA purifies in DDM in the

presence of PI, PE and PC, with both PI and PE having roles in maintaining the functional

dimeric state of the protein [12]. Whilst PI is too expensive to include in the screen and was

thus not assessed here, PE had no effect on UapA. MD simulations showed that the PE binds

less tightly than PI and the effects of both PI and PE could only be seen following delipidation

and subsequent addition of the lipids [12]. Therefore, it is possible that PI and PE lipids that

remain bound to the protein during isolation form tight interactions with the protein and

additional PE has no significant effect. Interestingly, we did see a stabilising effect for PS. This

is not a lipid identified from previous lipidomics analysis of purified UapA, suggesting it binds

relatively weakly compared to PI and PE. PS does co-purify with the structurally related boron

transporter from Saccharomyces cerevisiae (ScBOR1p) and has a role in dimer formation [50],

strongly indicating that the precise effects of this lipid on UapA are worth further analysis.

CHS also stabilises the protein with a ΔTm of +4.2 ± 1.4˚C (Fig 2C). UapA is a fungal protein

and as such physiologically exposed to ergosterol, rather than the mammalian equivalent, CHL

[70]. However, due to their structural similarity CHS likely substitutes for ergosterol in stabilis-

ing UapA [71]. Further analyses exploring the effects of CHL/ergosterol are warranted in the

case of UapA. CL, a lipid that UapA does not encounter in the cell, markedly destabilises

UapA (Fig 2C). PA’s also destabilise UapA although natively present in Aspergillus nidulans
membranes [70]. Intriguingly, a combination of PE and PG also has a destabilising effect on

the protein although DPPG alone stabilised the transporter with a ΔTm of +3.9 ± 1.3˚C.

The addition of the substrate, xanthine, did not stabilise UapA (Fig 2C). It is important to

note that the construct we are using is a thermostabilised form of the protein

(UapA-G411VΔ1–11) trapped in the inward facing conformation [72]. Previous analysis indi-

cated that the presence of xanthine stabilises this construct but only in protein that had been

solubilised in the comparatively harsh detergent, nonyl-b-D-glucoside (NG). In the larger

micelles of DDM, used to purify the protein for analysis here, the addition of xanthine appears

to have minimal effects.

Tm-PPase. Tm-PPase is a thermophilic protein and, as such, unfolds at much higher tem-

peratures compared to the mesophilic UapA and A2AR. To date, little is known about the

effects of lipids on M-PPases. Hydrolytic activity measurements show increased activity of

thermophilic M-PPases after relipidation with soybean lecithin [73]. However, soybean leci-

thin is not part of the lipid screen due to its short shelf life. Surprisingly, the analysis of the

melting scan data reveals stabilising effects of lipids on Tm-PPase across almost all lipid classes

represented in the screen, including anionic lipids POPG and POPS, with an overall average

ΔTm of +4.6 ± 0.4˚C (Fig 3). Such broad stabilisation across different lipid classes is most likely

conferred by non-specific interactions of protein with the lipidated detergent micelle rather

than specific protein-lipid interactions (see Introduction). Indeed, Tm-PPase was purified in a

rather harsh detergent, OGNG, used routinely for structural studies, due to the intrinsic stabil-

ity of the protein [74]. The lipidation of detergent micelles likely reduces the micelle curvature,

leading to increased protein stability [75]. The different effect on Tm-PPase stability observed

within anionic lipids (e.g. 16:0–18:10PA vs. POPS) and PC’s (e.g. LMPC vs. DMPC) highlights

the contribution of both lipid parts, the hydrophilic head group (changed in the former pair)

and the hydrophobic lipid tail (changed in the latter pair) to their overall properties and effect

on proteins (Fig 3C). Beside PA’s and LMPC, only MAG’s and CHS did not stabilise Tm-

PPase solubilised in OGNG. Conversely, CHL addition slightly improved the thermostability

(ΔTm: +2.9 ± 0.6˚C) (Fig 3C). Biophysical characterisation and atomistic simulations have
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previously shown that CHS is not an ideal mimic of CHL; even lesser so in its deprotonated

form (pKa,CHS: ~5.8), which is predominantly present in the Tm-PPase buffer (pH: 6.5), which

may explain the differences observed between the two [76].

We also tested the effect of the non-hydrolysable inhibitor IDP, which is regularly used for

the functional characterisation of M-PPases and in structural studies to lock the protein in a

conformational state. IDP binding to Tm-PPase did not result in thermostabilisation suggest-

ing that the IDP-bound structure is not energetically more favourable than the apo-structure

(Fig 3C), even though IDP is known to protect Tm-PPase against protein degradation [77].

Biophysical data characterising the apo-structure of Tm-PPase and studies of Tm-PPase using

a combination of lipids with IDP would yield insights into why IDP did not appear to be

stabilising.

3. Discussion and conclusion

It is becoming increasingly well established that membrane lipids play key roles in structure

and function of membrane proteins. However, we are still highly dependent on detergent

based extraction and isolation methods, which result in loss of lipids, for protein preparation.

Here we describe the first pre-prepared, easy-to-use screen for the high-throughput identifica-

tion of stabilising lipids. The lipid screen was designed as versatile tool and could also be used

in association with other screening methods, for example HiLiDe [42] by varying the detergent

concentration used in combination with the different lipids. Rationally, longer-chain deter-

gents, which are in general more stabilising (DDM versus DM, for instance) would be expected

to have additive effects on protein stability with the lipids identified through this lipid screen.

Other applications adding further value to it include the use as a lipid additive source for crys-

tallisation trials, functional analysis (e.g. in liposomes) or reconstitution studies into nanodiscs

for cryo-EM experiments.

The choice of lipids to include in the screen was based on those shown to co-purify with,

crystallise in complex with, or stabilise membrane proteins and also took into account the cost

and stability of individual lipids. We tested this screen with three different membrane proteins

and assessed their relative stabilities in the presence of the lipids by nanoDSF (Figs 1–3). Other

methods could be used for screening the stability of a given protein including dye based ther-

mal denaturation analysis with, for example, the commonly used N-[4-(7-diethylamino-

4-methyl-3-coumarinyl)phenyl] maleimide (CPM) fluorochrome [78].

Our analysis confirmed the known stabilising effects of both ZM241385 and CHS on the

A2AR providing confidence that this approach is a suitable method for identifying stabilising

lipids (Fig 1C). It is important to note that the A2AR protein that we worked with is thermosta-

bilised through the incorporation of specific point mutations. However, CHS is also known to

be crucial for stability of the A2AR modified only through the truncation of the C-terminal tail

[79], thus we would expect to see the same results with respect to CHS if we had used this non-

mutagenized receptor form. In addition, we identified novel molecules likely to form specific

interactions with and stabilising both A2AR (PCs) and UapA (CHS and PSs) that provide the

basis for further study (Figs 1 and 2C). Intriguingly, Tm-PPase was stabilised by virtually every

lipid within the screen (Fig 3C), a feature we suggest is caused by the non-specific partitioning

of lipids into the detergent micelle, altering the micelle structure and stabilising the associated

protein.

In summary, we present a novel screen suitable for the identification of lipids that stabilise

individual membrane proteins. Although the basic methodology we use here is common in

membrane protein research, we report on a new high-throughput system that is very straight-

forward, cost effective and broadly applicable. We believe our pre-dispensed screen and the
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described protocol for its application will be useful to the scientific community working on

challenging membrane protein targets. We are working on future commercialisation in coop-

eration with Molecular Dimensions in order to facilitate the structural and functional analysis

of stable, physiologically relevant protein samples.

4. Methods

Lipid screen preparation

All lipids were purchased from Anatrace or Avanti and solubilised in chloroform or a chloro-

form methanol mixture if supplied as powder. POPG (1-palmitoyl-2-oleoyl-sn-glycero-

3-phospho-1’- rac-glycerol) was dissolved in a 5:1 mixture of chloroform and methanol at 10

mg/mL. DPPE (1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine) was dissolved in a 9:1

mixture of chloroform and methanol at 5 mg/mL. All other lipids were dissolved in chloro-

form to a stock concentration of 10 mg/mL. A volume equivalent to 0.3 mg of lipid or lipid

mixture (Table 1) was transferred to a round-bottom glass-coated 96-well microplate (Web-

Seal Plate+, Thermo Scientific) in triplicates. Well H9-H12 were left empty to serve as a blank

control. The solvent was evaporated overnight under a constant stream of nitrogen gas. The

plates were sealed with aluminium foil under a nitrogen atmosphere and stored at -20˚C in the

dark until used.

Protein expression and purification

A2AR. We expressed and purified a stabilised human A2AR construct (Δ317–412, 209–218

replaced with a thermostabilized apocytochrome b562 from Escherichia coli (BRIL)), which

was successfully used for structural studies in the past [53,69]. Expression in a baculovirus

expression system followed the manufacturer’s instructions for the Bac-to-Bac system

(Invitrogen). Spodoptera frugiperda (Sf9) insect cells were infected at a cell density of 2 million

cells/mL with P2 virus at a 1:2000 dilution. Infected cells were harvested after incubation for

60 hours at 27˚C while shaking.

The purification is described in detail elsewhere [69]. In brief, Sf9 membranes were dis-

rupted and harvested by repeated Dounce homogenisation and ultracentrifugation in hypo-

tonic [10 mM MgCl2, 20 mM KCl and 50 mM HEPES pH 7.5] and hypertonic [0.8 M NaCl,

50 mM HEPES pH 7.5] buffers supplemented with and 1x proteoloc protease inhibitor cocktail

(Expedeon). The final membranes were resuspended in hypotonic buffer supplemented with

40% (v/v) glycerol and flash frozen in liquid nitrogen for storage at -80˚C until used. Prior to

solubilisation, the membranes were incubated with 2 mg/mL iodoacetamide, 4mM theophyl-

line and 1x proteoloc protease inhibitor cocktail for 30 minutes at 4˚C. The receptor was then

extracted using 1% (w/v) n-dodecyl-β-D-maltopyranoside (DDM) for 4 hours at 4˚C, followed

by centrifugation at 150,000 xg for 1 hour at 4˚C. The supernatant was incubated overnight

with 1.5 mL packed HisPur cobalt resin (Fisher Scientific) per litre of culture in a final buffer

containing 50 mM HEPES pH7.5, 0.8 M NaCl, 10% (v/v) glycerol 1 mM theophylline and 20

mM imidazole. The resin was washed with 10 column volumes (CV) wash buffer A [50 mM

HEPES (pH 7.5), 0.8M NaCl, 10 mM MgCl2, 10% (v/v) Glycerol, 25 mM imidazole, 0.1%

(w/v) DDM, 8 mM ATP,1 mM Theophylline] followed by 4 CV wash buffer B [50 mM HEPES

(pH 7.5), 0.8 M NaCl, 10% (v/v) glycerol, 50 mM imidazole, 0.05% (w/v) DDM, 1 mM theoph-

ylline]. The receptor was eluted in 9x 1 CV fractions elution buffer [25 mM HEPES pH7.5, 0.8

M NaCl, 10% (v/v) glycerol, 220 mM imidazole, 0.025 (w/v) DDM, 0.5 mM theophylline]. Elu-

tion fractions containing purified A2AR were combined after SDS-PAGE analysis (S1 Fig). The

purified protein sample was concentrated to 2 mg/mL with a 100 kDa molecular weight cut off

(MWCO) Vivaspin centrifugal concentrator (GE Healthcare), and buffer exchanged to the

PLOS ONE The RAMP lipid screen

PLOS ONE | https://doi.org/10.1371/journal.pone.0254118 July 12, 2021 12 / 20

https://doi.org/10.1371/journal.pone.0254118


final assay buffer [25 mM HEPES (pH 7.5), 0.8M NaCl, 1% (v/v) glycerol, 0.01% (w/v) DDM,

0.5 mM theophylline] using a PD10 desalting column (GE Healthcare). The final protein con-

centration was 1 mg/mL, determined using a detergent compatible protein assay (DC Protein

assay, BioRad). Finally, the sample was flash frozen in liquid nitrogen and stored at -80˚C.

UapA-G411V. A modified version of UapA lacking the 11 N-terminal residues and con-

taining a single point mutation UapA-G411VΔ1–11 was expressed as a fusion protein with the

C-terminal tobacco etch virus (TEV) cleavage site followed by GFP and 8xHis tag.

UapA-G411VΔ1–11 was transformed into the protease-deficient Saccharomyces cerevisiae
strain FGY217 (MTAα, ura3-52, lys2Δ201, pep4Δ) described in detail elsewhere [80]. In brief,

single colonies were inoculated in 10 mL minus-URA media [2 g/L amino acid mix w/o uracil,

6.7 g/L yeast nitrogen base w/o amino acids, 2% (w/v) glucose] in 50 mL aerated TubeSpin bio-

reactor tubes (TPP) and incubated at 30˚C for 16 hours with 300 rpm shaking. The overnight

cultures were diluted in 350 mL minus-URA media supplemented by 2% (w/v) glucose in a

1 L flask and incubated at 30˚C for 24 hours, shaking at 300 rpm. The culture was then diluted

with 1 L of minus-URA media supplemented with only 0.1% (w/v) glucose for induction at an

OD600 of 0.6. 22 hours after induction with 2% (w/v) galactose, cells were harvested at 4,000 xg

for 10 minutes and the pellets were resuspended in ~6 mL of CRB buffer [50 mM Tris (pH

7.5), 1 mM EDTA, and 0.6 M sorbitol] per litre of cell culture. The cells were lysed using a

Constant systems cell disruptor at 25, 30, 33 and 36 kpsi (5˚C). Cell debris was removed by

centrifugation at 10,000 xg for 10 minutes at 4˚C. The membranes were harvested by ultracen-

trifugation at 100,000 xg for 2 hours at 4˚C and resuspended in 6 mL MRB buffer [20 mM Tris

(pH 7.5), 0.3 M sucrose, 0.1 mM CaCl2] per litre of cell culture. Afterwards, membrane pro-

teins were solubilised for 1 hour at 4˚C in solubilisation buffer [1x PBS pH 7.5, 100 mM NaCl,

10% (v/v) glycerol, 1% (w/v) DDM, 1 mM xanthine, and one protease inhibitor tablet (Roche)]

and insoluble matter was removed by centrifugation at 100,000 xg, for 45 minutes (4˚C). The

supernatant was supplemented with 10 mM imidazole (pH 7.5) and incubated for 2 hours at

4˚C with 20 mL of nickel-nitrilotiacetic-acid (Ni-NTA) superflow resin (Quiagen) pre-washed

in buffer A [1xPBS pH 7.5, 100 mM NaCl, 10 mM imidazole, 10% (v/v) glycerol, 0.03% (w/v)

DDM, and 1 mM xanthine]. The mixture was loaded into an Econo-Pac gravity flow column

(Bio-Rad) and washed with 6 CV of buffer A followed by 20 CV of Buffer A supplemented

with 30 mM imidazole. The protein was eluted with 3 CV of buffer B [1x PBS pH 7.5, 150 mM

NaCl, 10% glycerol, 310 mM imidazole, 1 mM xanthine, and 0.03% (w/v) DDM].

The protein concentration was estimated by measuring GFP fluorescence (Molecular

Devices Spectramax M2) and TEV protease was added at a 1:1 ration of protease to protein.

The sample was transferred to a dialysis membrane with a 12 kDa MWCO (Fisher Scientific)

for 16 hours at 4˚C for GFP-His tag cleavage. Following cleavage, the sample was supple-

mented with 12 mM imidazole, centrifuged for 10 minutes at 4,000 xg (4˚C) and passed

through a 0.22 μm filter to remove any precipitation. Afterwards, the sample was loaded on a 5

mL HisTrap column (GE Healthcare) pre-equilibrated with buffer C [20 mM Tris pH 7.5, 150

mM NaCl, 0.6 mM xanthine, and 0.03% (w/v) DDM] additionally containing 15 mM imidaz-

ole to remove TEV and cleavage product from the sample. The flow through was collected and

concentrated to a volume of 0.5 mL in the Amicon 100 kDa MWCO concentrators (Merck)

and injected into an equilibrated (buffer C) Superdex 200 10/300 gel filtration column (GE

Healthcare). The sample was run at a flow rate of 0.35 mL/minute at 4˚C. The quality of eluted

fractions was checked by SDS-PAGE analysis (S1 Fig). The purest and most monodispersed

fractions were pooled together, concentrated to 0.5 mg/mL using the Amicon 100 kDa

MWCO concentrators (Merck) and flash frozen in liquid nitrogen for storage at -80˚C until

used.
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Tm-PPase. Protein expression and purification followed protocols described in detail

elsewhere [73]. In brief, 6xHis-tagged Tm-PPase in the pRS1024 vector under the control of

the PMA1 promoter was freshly transformed into the protease-deficient Saccharomyces cerevi-
siae strain BJ1991 (α prb1-1122 pep4-3 leu2 trp1 ura3-52 gal2) following a standard protocol

for yeast transformation [80]. Colonies grown on yeast-peptone-dextrose (YPD) plates [1%

(w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) dextrose, 1.5% (w/v) agar, 100 μg/mL Carbeni-

cillin] were transferred into 250 mL of synthetic Complete Dropout minus leucine (SCD-Leu)

media [2.7% (w/v) yeast nitrogen base, 2% (w/v) glucose, 0.5 mM L-tryptophan, 0.4 mM L-his-

tidine, 0.2 mM L-adenine, 0.2 mM L-uracil, 100 μg/mL Carbenicillin]. The culture was culti-

vated for 24 hours (30˚C, 200 rpm) and used to inoculate 750 mL 1.5X YPD media for protein

expression (8 hours, 30˚C, 200 rpm). Afterwards, cells were harvested and washed twice in

deionised water. The cell pellets were resuspended in 0.5 mL buffer [200 mM Tris pH 7.5, 40%

(w/v) glycerol, 10 mM EDTA, 2 mM dithiothreitol (DTT), 0.2 mM phenylmethylsulfonyl fluo-

ride (PMSF)] per gram of dry cell mass for lysis using a bead beater and 0.5-mm glass beads.

The bead beater chamber was topped up with 10 mM Tris pH 7.5, 10% (v/v) glycerol, 5 mM

EDTA, and 1 mM DTT until completely full. Cells were lysed at 4˚C by 12x 1-minute activa-

tions, interspaced by 1-minute cool-down periods on ice. Cell debris was removed (3,500 xg,

4˚C, 15 minutes) and the supernatant was diluted with 10 mM Tris pH 7.5, 5 mM EDTA, and

1 mM DTT to a glycerol concentration of 20% (v/v). Membranes were harvested at 100,000 xg

and 4˚C for 1 hour and resuspended in 50 mM MES-NaOH pH 6.5, 20% (v/v) glycerol, 50

mM KCl, 5 mM MgCl2, 1.33 mM DTT, 0.336 mM PMSF, and 2 μg/mL Pepstatin A. The total

protein concentration of the extracted membranes was determined in a Bradford assay and

diluted to 7.2 mg/mL. Diluted membranes were supplemented with 0.33 mM Na2PPi and

mixed at a 3:1 ratio with 4x solubilisation buffer [50 mM MES-NaOH pH 6.5, 20% glycerol,

and 5.34% (w/v) DDM]. Protein solubilisation followed the hot solve method [73] at 75˚C for

1.5 hours. Denaturated proteins and insoluble matter were removed by centrifugation (4,000

xg, 15 minutes) and KCl was added to a final concentration of 0.3 M. 10 μL of Ni-NTA super-

flow resin was added per 1 mL of solubilised membrane sample. The mixture was loaded into

an Econo-Pac gravity flow column after 1.5 hours at 40˚C and 200 rpm shaking. The resin was

washed with 2x CV of wash buffer [50 mM MES-NaOH pH 6.5, 20% (w/v) glycerol, 50 mM

KCl, 5 mM MgCl2, 20 mM imidazole, 0.05% (w/v) octyl glucose neopentyl glycol (OGNG), 1

mM DTT, 0.2 mM PMSF, and 2 μg/μL pepstatin A] followed by protein elution in 2x CV of 50

mM MES-NaOH, pH 6.5, 3.5% (v/v) glycerol, 50 mM KCl, 5 mM MgCl2, 400 mM imidazole,

0.05% (w/v) OGNG, and 1 mM DTT. Imidazole was removed in a buffer exchange into 50

mM MES-NaOH, pH 6.5, 3.5% (v/v) glycerol, 50 mM KCl, 5 mM MgCl2, 0.05% (w/v) OGNG)

using a PD10 desalting column. The sample purity was checked by SDS-PAGE analysis (S1

Fig). Purified protein was concentrated to 1 mg/mL in 50 kDa MWCO Vivaspin 2 centrifugal

concentrators, flash frozen in liquid nitrogen and stored at -80˚C until used.

Relipidation of membrane proteins

The lipid screen was thawed and centrifuged for 3 minutes at 1,000 xg prior to use to ensure all

lipid powder was at the bottom of the plate. 3x protein buffers without detergent (A2AR: 30

mM HEPES pH 7.5, 2400 mM NaCl, UapA: 60 mM Tris pH 7.5, 450 mM NaCl, 1.8 mM xan-

thine; Tm-PPase: 150 mM MES-NaOH, pH 6.5, 11.5% (v/v) glycerol, 150 mM KCl, 15 mM

MgCl2) were prepared, degassed and cooled down to 4˚C. To each well containing 0.3 mg lip-

ids, 50 μL 3% (w/v) detergent (OGNG for Tm-PPase, DDM for UapA and A2AR) was added.

Solubilisation of the lipids took place overnight at 24˚C while shaking at 250 rpm. This was

aided by pipetting up and down 10x using a multi-channel pipette. The RAMP lipid screen
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was centrifuged for 3 minutes at 1,000 xg to collect all undissolved lipids at the bottom of the

plate. 15 μL of solubilised lipids (supernatant) was mixed with 15 μL of water and 15 μL of the

respective 3x protein buffer, diluting the detergent and lipid concentration to 1% and 2 mg/mL,

respectively. The remaining lipid screen was sealed and stored at -20˚C in the dark for future

use. Protein at 1 mg/mL (Tm-PPase, A2AR) or 0.5 mg/mL UapA was mixed 1:1 with the lipid

supplemented 1x protein buffer. The required sample volume for stability testing using the Pro-

metheus NT.48 nanoDSF (Nanotemper) was 8–10 μL per measurement.

Differential scanning fluorimetry for stability testing (nanoDSF)

8–10 μL of the prepared protein samples were transferred into standard grade Prometheus

NT.48 capillaries (Nanotemper). The capillaries were loaded into the Prometheus NT.48 and

the excitation power of the device was adjusted to give a fluorescence signal at 330 nm just

below 20000 RFU. The PR.ThermControl (version 2.1.2) software was used to set up a melting

scan from 20˚C to 99˚C with a ramp rate of 1˚C/min. The fluorescence emission at 330 nm

(F330), 350 nm (F350), the 350:330 ratio, and the light scattering signal were recorded over the

course of the melting scan. The effect of all lipids on protein stability was tested in the same

run for each protein and compared to the reference sample without lipid added (apo). Addi-

tionally, another control with a known ligand added to the sample was included for each pro-

tein (Tm-PPase: imidodiphosphate (IDP), UapA: xanthine, A2AR: ZM241385). The

experiment was repeated three times for each protein to calculate the standard error of the

mean (SEM) stated in the text and figures. The apparent melting temperatures (Tm) were

obtained at the minimum/maximum of the first derivative of the F330 signal or 350:330 ratio

by the PR.ThermControl software. The data was exported for plotting and analysis in Graph-

Pad Prism 7.0.

Supporting information

S1 Fig. Purified membrane proteins used in the stability screening with added lipids from

the lipid screen. A Coomassie-stained SDS-PAGE gel is shown for each tested protein in an

individual panel. The black arrow indicates the band corresponding to the target protein. In

the purified A2AR sample, more than one A2AR species is present due to glycosylation, which

is commonly observed for this protein.

(DOCX)

S2 Fig. A2AR purification gel image: Used to generate the first panel in S1 Fig (also shown

on left). All lanes that were removed from this original image are indicated by an X.

(DOCX)

S3 Fig. UapA purification gel image: Used to generate the second panel in S1 Fig (also

shown on left). All lanes that were removed from this original image are indicated by an X.

(DOCX)

S4 Fig. Tm-PPase purification gel image: Used to generate the third panel in S1 Fig (also

shown on left). All lanes that were removed from this original image are indicated by an X.

(DOCX)

S1 Raw images. A2AR purification gel image: Used to generate left panel in S1 Fig (also

shown below).

(PDF)
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