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Abstract Phosphoglycerate mutases (PGM) interconvert 2-
and 3-phosphoglycerate in the glycolytic and gluconeogenic
pathways. A putative cofactor-independent phosphoglycerate
mutase gene (iPGM) was identified in the genome sequence
of the Wolbachia endosymbiont from the filarial nematode,
Brugia malayi (wBm). Since iPGM has no sequence or
structural similarity to the cofactor-dependent phosphoglyc-
erate mutase (dPGM) found in mammals, it may represent
an attractive Wolbachia drug target. In the present study,
wBm-iPGM cloned and expressed in Escherichia coli was
mostly insoluble and inactive. However, the protein was
successfully produced in the yeast Kluyveromyces lactis and
the purified recombinant wBm—iPGM showed typical PGM
activity. Our results provide a foundation for further
development of wBm—-iPGM as a promising new drug
target for novel anti-filarial therapies that selectively target
the endosymbiont.

Introduction

In recent years, obligate o-proteobacterial endosymbionts
belonging to the genus Wolbachia that are present in most
filarial nematode species have become the focus of intense
study as a new approach to chemotherapy. Studies
performed in vitro or in animal models, as well as clinical
trials in humans have shown the susceptibility of Wolbachia
to the tetracycline family of antibiotics. Tetracycline-
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mediated clearance of Wolbachia from nematode tissues
correlates with a block in embryogenesis and worm
development and, in certain situations, leads to a significant
reduction in adult worm burdens and a reduction in
associated pathology (Taylor et al. 2005; Hoerauf 2006).
These studies have clearly demonstrated the feasibility of
treating filarial infections through anti-Wolbachia therapies,
but the protracted treatment regimens required for efficacy,
coupled with contra-indications for certain individuals,
render tetracycline therapy in its present form unsuitable
for mass treatment in endemic areas. Therefore, there is a
need to discover alternative anti-Wolbachia treatments
which may be facilitated by identification of new drug
targets in this endosymbiont.

The completed genome sequence of the Wolbachia
endosymbiont from the filarial nematode Brugia malayi
(wBm; Foster et al. 2005) has generated an unrivalled
resource for identification of enzymes and processes that
are either lacking in mammals or differ substantially from
their mammalian counterparts, warranting their further
evaluation as candidate drug targets. We have identified a
putative cofactor-independent phosphoglycerate mutase
(iIPGM) in the catalog of proteins predicted by the wBm
genome sequence. Phosphoglycerate mutase (PGM) cata-
lyzes the interconversion of 2- and 3-phosphoglycerate
(2-PG and 3-PG) in the glycolytic and gluconeogenic pathways
that are essential in most organisms. PGM exists in two distinct
forms, iPGM and cofactor-dependent phosphoglycerate mu-
tase, dPGM (Fothergill-Gilmore and Watson 1989; Jedrzejas
2000). The iPGM proteins are ~57 kD monomers and
promote the intramolecular transfer of the phosphoryl group
between the monophosphoglycerates through a phospho-
serine intermediate. Conversely, dPGM is ~27 kD and is
usually active as a dimer or tetramer. It catalyzes the
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intermolecular transfer of the phosphoryl group between the
monophosphoglycerates and the cofactor (2,3-diphosphogly-
cerate) via a phosphohistidine intermediate. Furthermore,
there is no similarity in either the primary sequences or
three-dimensional structures of iPGM and dPGM enzymes
(Fothergill-Gilmore and Watson 1989; Jedrzejas 2000).
Vertebrates possess only dPGM (Carreras et al. 1982), which
has raised the suggestion that iPGM may represent a
potential drug target in pathogenic organisms which contain
only that form (Fraser et al. 1999; Galperin and Jedrzejas
2001; Zhang et al. 2004). Our genomic analysis of wBm, the
Wolbachia endosymbiont from B. malayi, indicated that this
bacterium encodes only iPGM which we have cloned and
expressed in active form.

Materials and methods
Cloning of wBm—iPGM

The wBM—iPGM open reading frame was amplified from a
bacterial artificial chromosome, BMBAC39G04 (Foster et
al. 2004), known to contain the gene, using Phusion High-
Fidelity DNA Polymerase (New England Biolabs) and the
following primers: Forward 5'-GATCTACTCGAGAT
GAACTTTAAGTCAGTTGTTTTATG-3' (Xhol site under-
lined) and Reverse 5'-ATAAGAATGCGGCCGCTTACAC
AATCAGTGAACTACCTGT-3" (Notl site underlined). The
PCR product was cloned between the corresponding sites
of the vectors, pKLMF-EK and pKLMF-FX (GenBank
accession nos. FJ010196 and FJ010197, respectively; New
England Biolabs) for intracellular expression of wBm-—
iPGM bearing an in-frame N-terminal maltose binding
protein (MBP) fusion partner, separated by either an
enterokinase (EK) or Factor Xa (FX) protease cleavage
site, in the yeast Kluyveromyces lactis. The integrity of the
cloned sequences was confirmed by DNA sequencing.

Expression of wBm—iPGM in K. lactis

The construct, pKLMF-EK-wBm—iPGM, was linearized
with Sacll and used to transform K. lactis GG799
competent cells following the K. lactis Protein Expression
Kit recommendations (New England Biolabs). Transform-
ants containing multiply-integrated copies of the expression
cassette, which may produce more recombinant protein,
were identified by PCR of patched colonies using Integra-
tion Primer 4: 5-GTTTACCTTCTTCAGTTTTCAT-3'
paired with the kit’s Integration Primer 3 and selected for
production of the MBP-wBm—iPGM fusion protein. A
single colony was used to inoculate 3 ml YPGlucose (10 g
yeast extract, 20 g Bacto Peptone/L, 2% glucose) and cells
were grown with shaking at 240 rpm at 30°C overnight.
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Two 1-L YPGalactose (2%) cultures were inoculated with
1 ml each of the overnight culture, and cells were grown in
baffled flasks at 30°C with shaking at 200 rpm for 3 days.
Cells were pelleted at 6,000xg for 15 min at 4°C and
pooled to give about 24 g wet cells. The cells were washed
once in 25 ml of ice-cold Column buffer (20 mM Tris—HCl
pH 7.5, 200 mM NaCl, 1 mM DTT, 5% Glycerol) and
pelleted once more. The pellet was resuspended in four
volumes (~100 ml) of cold Column buffer supplemented
with Complete EDTA-free protease inhibitor cocktail
(Roche Applied Sciences). The cell suspension was passed
through a TS Series Benchtop Cell Disruptor (Constant
Systems) at 40 Kpsi three times. The sample was
centrifuged at 14,000xg for 30 min at 4°C and the
supernatant harvested. The cell extract was loaded on to a
10 ml amylose column according to the pMAL Protein
Fusion and Purification System recommendations (New
England Biolabs). Recombinant MBP-wBm—-iPGM was
eluted with column buffer containing 10 mM maltose and
1.5-ml fractions were collected for separation by SDS-
PAGE and for PGM enzyme assays.

PGM enzyme assays

The activity of the wBm—-iPGM fusion protein was
measured in the forward (glycolytic) direction using an
established enzyme-coupled assay (White and Fothergill-
Gilmore 1992; Fraser et al. 1999; Raverdy et al. 2007).
Briefly, MBP-wBm—iPGM was added to 1 ml assay buffer
(30 mM Tris—HCI pH 7.0, 5 mM MgSO4, 20 mM KCI)
supplemented with 0.15 mM NADH, 1 mM ADP, 1.5 mM
3-PG (Sigma P8877), and 2.5 units each of enolase (Sigma
E6126), pyruvate kinase (Sigma P7768) and L-lactic
dehydrogenase (Sigma L2518). PGM activity was deter-
mined indirectly by monitoring the consumption of NADH
at 340 nm. PGM reactions were performed at 30°C for
5 min with data collected at 10 s intervals using a Beckman
DU 640 spectrophotometer set at 340 nm. Controls
included (1) a baseline reaction that lacked iPGM, (2) a
reaction that also lacked iPGM but had a comparable
volume of column buffer and, (3) a reaction using a
comparable amount of MBP-wBm—-iPGM that had been
boiled for 5 min.

Results and discussion
Sequence analysis of wBm—iPGM

The sequence of the cloned wBm—iPGM (1,506 bp) was
identical to the gene predicted by the complete Wolbachia
genome. The deduced protein (~56 kD) contains the
catalytic serine and 13 other critical residues indicated by
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structural analysis of the biochemically characterized iPGM
from Bacillus stearothermophilus (Jedrzejas et al. 2000a,b;
Fig. 1). wBm—iPGM has greatest similarity with the iPGM
proteins predicted by the genomes of other o-proteobac-
teria, notably rickettsial organisms such as Anaplasma
marginale and Ehrlichia ruminantium (~55%). It also has
similarity to experimentally verified iPGMs from other
bacteria such as E. coli (Fraser et al. 1999) and B.
stearothermophilus (Chander et al. 1999; ~43%) as well
as from protozoan parasites such as Trypanosoma brucei
(Chevalier et al. 2000; Djikeng et al. 2007; 31%), and
nematodes such as B. malayi (Zhang et al. 2004; Raverdy et
al. 2007; ~40%). Lateral gene transfer events between
Wolbachia and their invertebrate hosts, including filarial
nematodes, appear widespread (Hotopp et al. 2007) and
evidence for gene transfer of iPGM between or within
archaea, bacteria, and protozoans has been reported
(Liapounova et al. 2006; Johnsen and Schonheit 2007).
However, the clustering of wBm—-iPGM with other «-
proteobacterial iPGM enzymes and a lower amino acid

similarity to iPGM from B. malayi, which itself clusters
with other nematode iPGMs (Zhang et al. 2004; Raverdy et
al. 2007) argues against lateral gene transfer being
responsible for the presence of iPGM in both Wolbachia
and its nematode host.

Expression and purification of recombinant wBm—-iPGM

In order to demonstrate that wBm—iPGM encodes an active
PGM, recombinant enzyme was produced for biochemical
studies. Numerous attempts to express wBm—-iPGM in E.
coli were unsuccessful despite using different expression
systems that produced protein with either a N-terminal
MBP tag, a C-terminal Hiss tag, or untagged protein
produced by intein-mediated cleavage of a chitin binding
domain fusion partner. In these systems, wBm—-iPGM was
mostly insoluble and the small amounts of soluble protein
obtained were relatively impure and inactive (data not
shown). These results were surprising given that we and
others have produced several active iPGM enzymes from
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Fig. 1 Alignment of the deduced amino acid sequences of various
iPGM enzymes. The sequence of iPGM from the Wolbachia
endosymbiont of Brugia malayi (wBm; GenBank accession no.
AAW70991) is aligned with the extensively studied and structurally
characterized iPGM from Bacillus stearothermophilus (Bs; GenBank
accession no. Q9X519; Jedrzejas et al. 2000a,b) and the characterized
iPGM from Brugia malayi (Bm; GenBank accession no. AAQ97626;

Zhang et al. 2004; Raverdy et al. 2007). Residues that are identical in
at least two of the three sequences are shaded in black, while
conserved amino acid changes are grey. The catalytic serine (@) and
13 other residues (*) involved in catalysis (Jedrzejas 2000) are
conserved in all three enzymes. Alignment generated with ClustalW
and displayed with BOXSHADE (www.ch.embnet.org/software/
BOX_ form.html)
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diverse organisms in these bacterial expression systems
(Fraser et al. 1999; Collet et al. 2001; Guerra et al. 2004;
Zhang et al. 2004; Djikeng et al. 2007; Raverdy et al.
2007). Unlike other expressed iPGM enzymes, wBm-—
iPGM has a high number of cysteine residues and the
formation of disulfide bonds is strongly predicted (http://
scratch.proteomics.ics.uci.edu/). However, there was no
difference in expression and activity of wBm—-iPGM when
produced in E. coli strains having either reducing or
oxidizing cytoplasms. Similarly, purification in the presence
of reducing agents (DTT or (-mercaptoethanol) did not
yield active protein. Expression of a synthetic wBm—1PGM
gene, optimized for E. coli codon usage, also failed to
improve expression. Active His-tagged wBm—-iPGM was
finally recovered from E. coli by urea denaturation of
insoluble protein and subsequent refolding, but the specific
activity of the refolded protein was only 0.04 units/mg (data
not shown).

The difficulties of producing active recombinant wBm—
iPGM in E. coli prompted us to develop a method for
intracellular expression in yeast. We successfully produced
wBm—-iPGM as a MBP fusion in K. lactis. The MBP moiety
serves as both a tag for purification and an aid to solubility
(Kapust and Waugh 1999). MBP-wBm—iPGM was pro-
duced with a high degree of purity (Fig. 2). The apparent
molecular weight (~100 kDa) is consistent with the

kDa 1 2 3 4 5 6 7 8

250
150

100
80

60
50

40
30

25
20

15
10

Fig. 2 Purification of MBP-wBm—iPGM expressed intracellularly in
the yeast K. lactis. Fractions from the purification were analyzed by
SDS-PAGE and the gel stained with Coomassie Blue. Lane I Protein
Ladder (New England Biolabs), lane 2 K. lactis lysate, lane 3
supernatant of K. lactis lysate, lane 4 pellet of K. lactis lysate, lane 5
flow-through from amylose column, /ane 6 column wash, lanes 7, 8,
and 9, elution fractions. The arrowhead indicates the protein band
corresponding to recombinant MBP-wBm—-iPGM
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Fig. 3 Activity of recombinant wBm—iPGM. Conversion of 3-PG to
2-PG by MBP-wBm—iPGM (filled circle) is measured indirectly by a
decrease in NADH concentration, determined spectrophotometrically
at 340 nm. Consumption of NADH is directly proportional to PGM
activity. A baseline control lacking wBm—iPGM (open circle) is
shown

calculated size of iPGM (~56 kDa) fused to MBP
(~42 kDa). The identity of this ~100 kDa protein as a
MBP fusion was confirmed by Western blot using an anti-
MBP monoclonal antibody (New England Biolabs; data not
shown). Similar expression and purification of wBm—-1PGM
was obtained using the construct pKLMF-FX-wBm—iPGM
(data not shown). The method we developed for intracellular
expression of MBP-wBm—-iPGM in K. lactis may prove
suitable for other proteins that express poorly in E. coli.

PGM activity of recombinant MBP-wBm—-iPGM

The activity of the wBm—-iPGM fusion protein was
measured in the forward (glycolytic) direction using an
established enzyme-coupled assay (Raverdy et al. 2007) in
which PGM activity is determined indirectly by monitoring
the consumption of NADH at 340 nm. A typical PGM
activity was observed (Fig. 3) which was significantly
different from a baseline control that lacked recombinant
wBm—-iPGM (Fig. 3) or a control that used boiled enzyme.
Duplicate assays were performed on three different prepa-
rations of MBP—-wBm—iPGM. From the slope of the curves,
specific activities ranging from 1.0 to 4.1 units/mg were
calculated. One unit of PGM activity is defined as the
amount that is required for the conversion of 1.0 umol
NADH to NAD per minute. The specific activity of wBm—
iPGM produced in K. lactis is therefore up to 100-fold
higher than that obtained in E. coli (0.04 units/mg) after
denaturation and refolding of insoluble protein and is
broadly similar to activities reported for other bacterial iPGM
enzymes (Kuhn et al. 1993; Leyva-Vazquez and Setlow
1994; Chander et al. 1999) but lower than most eukaryotic
iPGMs where specific activities are typically in the range of
50 to 400 units/mg (Chevalier et al. 2000; Guerra et al. 2004;
Zhang et al. 2004). Removal of the MBP moiety by
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digestion of the fusion protein with enterokinase did not
enhance the activity of wBm—-iPGM (data not shown).
iPGMs are metalloenzymes and all characterized bacterial
enzymes appear to use manganese as the preferred ion
(Jedrzejas and Setlow 2001). We did not observe any
enhancement in MBP-wBm—iPGM activity when the stan-
dard magnesium-containing buffer was supplemented with
either 1 mM cobalt or manganese (data not shown).

The essential roles of Wolbachia endosymbionts in
filarial nematode biology have resulted in these bacteria
being considered as an Achilles’ heel of their worm hosts
and proof-of-principle clinical trials using tetracycline
antibiotics are testament to that view (Taylor et al. 2005;
Hoerauf 2006). We have initiated studies to identify and
characterize new candidate drug targets predicted by the
wBm genome sequence. The identification of wBm—-iPGM
and production of active recombinant protein for further
studies represents one of the first examples of utilizing the
endosymbiont genome sequence to facilitate development
of novel anti-Wolbachia approaches towards filarial disease
control. The lack of similarity in primary sequence or
tertiary structure between dPGM and iPGM makes it highly
probable that an iPGM inhibitor would not affect the
mammalian enzyme. The likelihood that iPGM inhibition
would disrupt filarial biology either directly or through
targeting the Wolbachia endosymbiont appears high. In all
organisms where iPGM is present and the gene has been
deleted or its transcript level reduced by RNAI, deleterious
effects have been observed. Reduction of iPGM activity in
C. elegans by RNAI resulted in embryonic lethality, larval
lethality and abnormal morphology (Zhang et al. 2004).
Similarly, iPGM has been shown to be essential in diverse
bacterial species (Leyva-Vazquez and Setlow 1994; Morris
et al. 1995; Glass et al. 2006; Gallagher et al. 2007). These
studies in nematodes and bacteria demonstrate the feasibil-
ity of developing novel therapies that target the iPGM of B.
malayi and/or its Wolbachia endosymbiont.

That iPGM is present in Wolbachia, nematodes and
several other pathogens while absent in mammals makes it
an attractive target in diverse organisms. Therefore,
identification of an iPGM inhibitor could lead to new
therapeutic strategies, not only for filarial disease control,
but additionally, for a range of infectious diseases. There is
presently no known inhibitor of this enzyme. The avail-
ability of active recombinant iPGM enables further devel-
opment of this target and its inclusion in high-throughput
inhibitor screens.
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