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ABSTRACT OF THE DISSERTATION 

Conformational Dynamics of Membrane Proteins 

by 

Noah Jordan Kopcho 

Doctor of Philosophy in Chemistry 

University of California San Diego, 2020 

 

Professor Geoffrey Chang, Chair 

Professor Elizabeth A. Komives, Co-chair 

 

 Membrane proteins reside along the barrier between intracellular and extracellular milieu. 

They regulate transport and transduce signal necessary to maintain life. Critical to these 

functions are dynamic motions capable of transmitting molecules or information. The method of 

HDX-MS is uniquely suited to studying such conformational dynamics, as the timescales of 

measurement refer to the broad motions associated with domain movement and catalysis. This 

work employs HDX-MS to study the dynamics of three unique membrane associated proteins. 

Kinetic analysis and the method of HDX-MS are extended to characterize in vitro generated 

monoclonal camelid antibody fragments. 



xix 

 

  

Chapter I provides a general introduction to protein dynamics and HDX-MS. An 

overview of timescales of molecular motions is presented, followed by a summary of timescales  

measurable by common biophysical techniques. The advantages of HDX-MS used to study 

biologically relevant dynamic events are discussed, and an introduction to HDX-MS theory and 

methodology is presented.  

 Chapter II provides a cryo-EM structure of the Oryza sativa ion channel OSCA1.2. This 

transporter responds to hyperosmolality in the environment to regulate ion flux. Computational 

and experimental dynamics are studied and a mechanism of osmolarity sensing is presented. 

Chapter III utilizes structural insight along with HDX-MS measurements of dynamics to 

probe non-canonical activation of the peripheral membrane G protein subunit Gαi. This work 

provides insight into how binding of guanosine exchange modulators stimulates GDP 

dissociation in Gαi subunits. 

Chapter IV contains an extensive study of the ABC transporter P-gp dynamics in three 

distinct conformations. Very high sequence coverage permits a global overview of P-gp 

dynamics. Comparisons between the inward-facing, pre-hydrolytic and outward-facing 

conformations indicate structural rearrangements undergone by the transporter, and show that the 

pre-hydrolytic ATP-bound state occupies an occluded conformation. 

In Chapter V, a rapid in vitro discovery platform is utilized to generate camelid antibody 

fragments specific for the P-gp molecule. This method generated a nM affinity anti-pgp Nb in a 

matter of days without the need for animal immunization. HDX-MS is employed to provide a 

map of the binding interaction, and BLI is utilized to measure binding kinetics.
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Introduction 
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A.  Conformational Dynamics 

A common phrase taught to students of biology is that structure follows function. An 

easy to grasp illustration of this expression is the physiology of a human hand. The function of 

the hand is the manipulation of objects, and the structure of the hand follows this function with 

fingers that enable digital manipulation. Similar logic applies on the scale of biological 

macromolecules. The folded structure of a protein determines the location and orientation of side 

chain and backbone atoms critical for carrying out biological processes. Just as the hand must 

undergo motion in order to grasp objects, biologically active proteins often require dynamic 

processes to carry out their unique functions. 

Structures determined by conventional biophysical techniques are generally presented as 

static images. In reality, proteins are highly dynamic machines in constant motion. These 

conformational dynamics occur over an enormous range of time scales. At the most elemental 

level, chemical bonds vibrate and rotate on the order of femtoseconds (1). Amino acid side 

chains undergo motions at a thousandth of this pace on the picosecond timescale (2). While the 

peptide bonds that comprise a protein backbone rotate even more slowly on the order of 

nanoseconds (3). 

Dynamics on the scale of folded proteins occur still more slowly over the broad range of 

microseconds to seconds (Fig. 1). This was shown to be the case for adenylate kinase, where the 

nucleotide binding domain was found to alternate in and out of catalytically competent states on 

the microsecond to millisecond regime (4). Similar timescales of domain movement were noted 

in P-glycoprotein where conformational processes associated with nucleotide hydrolysis were 

found to occur over milliseconds (5). Other proteins exhibit slower dynamics, such as heat shock 

protein 90 which undergoes conformational transitions over several minutes (6). 
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Nearly any measurable parameter that varies along with conformation may be taken as a 

measure of dynamics. A common approach is to study changes in spectroscopic properties as a 

molecule undergoes conformational changes (7). Fluorescent energy transfer is also commonly 

used to track conformational transitions due to its strict dependence on distance between 

fluorophores. This may involve native tryptophan residues (8) or strategically placed labels (9). 

Paramagnetic resonance spectroscopy can also provide a similar measure of intramolecular 

distance (10). All spectroscopic methods are advantageous in that experiments may be carried 

out over very long time-courses, enabling observation of slow dynamic processes. However, the 

data obtained reflect global conformational changes or the distance between two points and do 

not provide a rigorous depiction of molecular motions. 

Time-resolved imaging techniques, on the other hand, can provide a direct view of 

conformational dynamics. There are many available modalities with individual benefits and 

drawbacks.  X-ray imaging can be used to study the dynamics of proteins either in solution or in 

Figure 1.1. Timescales of dynamics. Timescales of fundamental 

dynamic processes and regimes accessible by common biophysical 

techniques are summarized. HDX-MS is uniquely suited to study 

dynamic motions associated with enzymatic functionality. 
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the crystal phase (11). The lower limit of dynamic timescales accessible is limited by how 

quickly data can be acquired, and new x-ray sources are capable of delivering femtosecond 

pulses (12). Observations cannot extend beyond the millisecond range however, as prolonged 

exposure to x-ray radiation leads to protein degradation (13). 

Cryogenic electron microscopy (cryo-EM) is an alternative capable of delivering 

structural data on par with x-ray imaging, though its usage is limited to macromolecules larger 

than ~50 kDa. Proteins studied using this method are flash frozen and deposited on grids before 

imaging, and the timescale of images is limited by the time necessary for sample handling. 

Currently the fastest fluidics handlers can achieve this in about 10 milliseconds, and any 

dynamic events occurring faster than this are inaccessible by cryo-EM (14). While there is no 

upper limit to dynamic timescales observable via cryo-EM, the microscopes are very costly and 

instrument time is a valuable commodity. Further, structural data is obtained through image 

averaging of well-populated conformations among the molecular ensemble. Sparsely occupied 

conformations will not be observed with cryo-EM. 

Nuclear magnetic resonance (NMR) is another imaging technique that can provide 

structural data of proteins in solution (15). Dynamic events may be probed down to the 

picosecond range using NMR, but thetimescales of observed events generally do not extent 

beyond milliseconds as measurements are limited by the delay time between radio frequency 

pulses. (16). Data interpretation is further complicated with increasing molecular weight, 

resulting in a practical upper limit of ~75 kDa. 

An in silico alternative to time-resolved imaging is the use of molecular dynamics (MD) 

simulations. Computational modeling has been widely used in the study of protein dynamics 

(17). Such simulations may be carried out using various degrees of granularity to limit the strain 
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on processing power and increase the duration of the simulation (18). Due to computational 

limitations, MD simulations do not surpass milliseconds in duration and therefore cannot depict 

slow dynamic processes associated with domain movement and catalysis.  

B.  Hydrogen-deuterium exchange mass spectrometry 

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an alternative technique 

for studying protein dynamics that is free from many limitations of other methods. 

Measurements are carried out in the native aqueous environment, and proteins of any size may 

be characterized. HDX-MS exploits the phenomenon of backbone amide hydrogen-deuterium 

exchange to probe changes in protein dynamics and solvent accessibility (19). When exposed to 

buffered D2O, amide protons will exchange with deuterons in the same manner as they would 

react with protons from H2O. Exchange occurs more rapidly for labile protons that are exposed 

to solvent than for those that are confined by structural elements (20). As a protein naturally 

undergoes conformational motions, additional protons will be rendered competent to exchange 

with deuterium. Thus, by measuring deuterium incorporation as a function of time, a picture of 

regional dynamics emerges. 

The exchange rate of individual amide protons is affected by many factors in the 

chemical environment. Salt, pH, temperature and neighboring side chains all contribute to the 

rate at which backbone protons interchange with the deuterium nuclei. While these factors can 

cause individual exchange rate constants to vary over several orders of magnitude, 

experimentally determined exchange rates of amides in unstructured peptides have been found to 

occur on the order of milliseconds to seconds (21). Deuterium incorporation also requires an 

amide proton to be solvent exposed. In proteins, the dynamic processes which gradually expose 

amides to exchange involve large scale domain movement and generally occur over 
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microseconds to minutes. Smaller conformational fluctuations occur more quickly than 

deuterium exchange and do not interfere with measurements (17). HDX-MS therefore provides 

an excellent readout of large-scale conformational dynamics. 

In a typical HDX-MS experiment, the protein of interest is first added to deuterated 

buffer and allowed to exchange for some desired amount of time (Fig. 2). Timepoints are often 

chosen such that uptake profiles will distinguish between fast exchanging amide protons in 

unstructured regions, moderately exchanging protons in folded labile regions and slowly 

exchanging protons in well-folded or occluded regions. Before measurement of deuterium 

Figure 1.2. HDX-MS workflow. A typical HDX-MS experiment begins with 

deuterium labeling in D2O buffer. The exchange reaction is then quenched at low 

temperature and pH 2.5 and deuterium incorporation is quantified via LC-MS. 
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uptake, samples are quenched at 0˚C and pH 2.5, and denaturant is added to aid protease 

digestion. 

Deuterium exchange is highly dependent on temperature and pH. Quenching by bringing 

the sample to 0˚C and pH 2.5 takes advantage of this dependence to inhibit the exchange reaction 

. Deuterium exchange can occur by either an acid-catalyzed or base-catalyzed mechanism. The 

observed exchange rate for an individual amide proton is the sum of the rates of these two 

mechanisms (Fig. 3). Because the base-catalyzed pathway occurs several orders of magnitude 

more quickly than the acid-catalyzed mechanism, the slowest observed rate occurs at the low pH 

range between 2.5 and 3 (21). Conveniently, side chain protons back-exchange readily within 

this pH range and do not interfere with measurements (22). Lowering the pH to the exchange 

rate minimum of pH 2.5 (Fig. 3) in the quench step  minimizes the exchange of the deuteriums 

back to hydrogen during chromatographic separation and analysis.  

After quenching, the sample is digested by an acid-stable protease and the resulting 

peptides are separated using a liquid chromatography (LC) system maintained at low  

Figure 1.3. Exchange rate pH dependence. Example of observed 

deuterium exchange rate as a function of pH for a single amide proton. 
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temperature. Deuterium incorporation is then quantified via MS analysis. This provides a very 

rich dataset. The LC retention time of each peptide is unique and may be used to validate peptide 

assignments during data analysis, and the shape of mass spectra also give an indication of protein 

dynamics. 

To be rendered competent for exchange, an amide proton must first be exposed to solvent 

and free of intramolecular hydrogen bonds. Conformational dynamics are required for this to 

occur, with the exception of highly disordered regions. Just as localized regions may unfold and 

expose protons to solvent, refolding processes also occur. This relationship may be described by 

the following chemical equation: 

Where F and U refer to folded and unfolded states for a region bearing a specific amide proton, 

and subscripts H and D denote the protonated and deuterated states, respectively. 

The fragment ions observed following an HDX-MS experiment usually appear as a single 

peak increasing in mass over time as more deuterium nuclei are incorporated (Fig. 4A). This 

happens when the refolding process which occludes an amide proton from solvent occurs much 

more quickly than the exchange reaction. In mathematical terms, this situation arises when k-1 >> 

k2 and is referred to as EX2 kinetic exchange.  

A less common situation arises in the opposite scenario when k-1 << k2 and is known as 

EX1 kinetic exchange. When the folding and unfolding processes which expose amides to 

solvent are much slower than the exchange reaction, distinct populations of deuterated and 

protonated amides may be observed if there are enough amides undergoing the exchange to 

produce a separate population of deuterated amides (23). These species are indicated by bimodal 
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peaks the mass spectra (Fig. 4B). EX1 kinetics are associated with cooperative folding events. 

Thus, in addition to generating information related to solvent accessibility, HDX-MS also 

provides a readout of conformational dynamics. 

In summary, HDX-MS provides highly sensitive local probes of internal protein 

dynamics that are rich in information regarding the internal motions of a protein as they occur in 

solution. While it is difficult to interpret the amide exchange in terms of specific dynamic events, 

comparisons of different states of a protein such as with and without a bound ligand can reveal 

interpretable differences such as ligand binding sites (24) and long range allostery (25).    
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Figure 1.4. EX2 and EX1 kinetics. Peptides 

displaying EX2 (A) and EX1 (B) kinetics are 

shown. Deuterium exchange was measured after 

0 min (bottom) and 5 min (top). 
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A. Introduction 

 Hyperosmolarity and osmotic stress are among the first physiological responses to 

changes in salinity and drought. Hyperosmolality triggers increases in cytosolic free Ca2+  

concentration and thereby initiates an osmotic stress-induced signal transduction cascade in 

plants (1-4). Salinity and drought stress trigger diverse protective mechanisms in plants enabling 

enhanced drought tolerance and reduction of water loss in leaves. Ion channels have long been 

hypothesized as sensors of osmotic stress. A candidate membrane protein named OSCA was 

isolated in a genetic screen for mutants that impair the rapid osmotic stress-induced Ca2+ 

elevation in plants (1). Arabidopsis thaliana OSCA1 (AtOSCA1) encodes a multispanning 

membrane protein that was reported to function in osmotic/mechanical stress-induced activation 

of ion currents. However, the underlying mechanisms and whether AtOSCA1 homologs include 

an ion-conducting Ca2+-permeable pore require further analysis. AtOSCA1 is a member of a 

larger gene family in Arabidopsis with 15 members (5), and with many homologs encoded in 

other plants and fungal genomes. Furthermore, evolutionary analyses have revealed that OSCA 

is distantly related to the anoctamin (ANO) superfamily, which includes the TMEM16 family of 

calcium dependent ion channels and lipid scramblases (6). 

B. Materials and Methods 

1. Expression and purification of OsOSCA1.2 

 We cloned OsOSCA1.2 (GenBank KJ920372.1) and made (tobacco etch virus) TEV 

protease-cleavable green fluorescent protein (GFP) fusions into the pPICZc vector, and then 

tested expression in P. pastoris. Expression vectors were linearized using PmeI and 

electroporated into competent P. pastoris KM71H cells (Life Technology). The resulting 

transformants were cultured and induced in small scale to screen for target expression based on 
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the intrinsic GFP fluorescence of cells and also from an anti-His Western blot of whole-cell 

lysate. OsOSCA1.2 was found to show both high levels of expression and desirable properties 

during purification (described below), and was therefore chosen for further characterization. 

Yeast clones selected for their high expression of OsOSCA1.2 were grown in minimal glycerol 

(4%) media, supplemented with 0.4% phosphoric acid and 0.024% trace metals at 28 °C in a 

New Brunswick BioFlo 415 system (Eppendorf). The pH of the media was titrated to pH 5 

before inoculation and adjusted during the vegetative growth phase using 50% ammonium 

hydroxide. The dissolved oxygen (DO) was maintained at 10% minimally through cascaded 

agitation until a DO spike occurred. The fermentation culture was then induced at pH 5 by slow 

methanol addition for 16–18 h. 

Cells were harvested and resuspended in cold lysis buffer [20 mM Tris·HCl (pH 8.0), 100 

mM NaCl, 15% glycerol, 23.4 mM leupeptin, 7 mM E-64, 4 mM chymostatin, 14.5 mM 

pepstatin A, 1 mM phenylmethylsulfonyl fluoride, 25 mM benzamidine], and they were lysed by 

a single passage through a cell disruptor (TS-Series; Constant Systems, Inc.) at 40,000 psi. 

Cellular debris was removed by centrifugation (12,500 × g, 20 min, 4 °C), and the supernatant 

was continued onto a 38,400 × g spin for 4 h to fractionate the plasma membrane. The membrane 

fraction was resuspended in lysis buffer and frozen at −80 °C. 

Membranes were solubilized with 1% n-dodecyl-β-D-maltopyranoside (β-DDM) and 

0.1% sodium cholate for ∼90 min at 4 °C. Insoluble material was removed by centrifugation 

(38,400 × g, 60 min, 4 °C), and 15 mM imidazole was added to the supernatant before batch 

binding to Ni- NTA agarose resin (Qiagen). The bounded resin was sequentially applied to a 

gravity column housing and washed with buffer A [20 mM Hepes (pH 8.0), 150 mM NaCl, 

0.03% β-DDM, 0.003% cholesteryl hemisuccinate], and an imidazole gradient was applied. 



16 

 

Bound target protein was eluted with buffer A containing 300 mM imidazole, concentrated to ∼8 

mL, desalted (HiPrep 26/10; GE Healthcare), and subjected to TEV protease digestion for 12 h at 

4 °C. The TEV-digested sample was reapplied to Ni-agarose (Qiagen) to rebind the TEV 

protease and the C-terminal His-GFP tag. The collected OsOSCA1.2 was then concentrated to 

∼1 mL and ultraspun at 95,000 rpm (TLA120.1 rotor) for 15 min at 4 °C. The sample was then 

applied to a Superdex 200 increase size-exclusion column (GE Healthcare) preequilibrated with 

20 mM Hepes (pH 8.0), 150 mM NaCl, 0.06% n-undecyl-β-D-maltopyranoside, 0.2 mM Tris(2- 

carboxyethyl)phosphine, and 0.01% cholesteryl hemisuccinate, and run at 4 °C. Peak fractions 

off the SEC column were checked using sodium dodecyl sulfate/polyacrylamide gel 

electrophoresis and directly snap-frozen at a concentration of ∼3 mg/mL. 

2. Electron microscopy (EM) data collection 

 Quantifoil 1.2/1.3 Au (Quantifoil Micro Tools GmbH) or CFlat 1.2/1.3 300 (Protochips) 

mesh grids were glow-discharged for 30 s at 30 mA (Emitech). Four microliters of OSCA1.2 at a 

concentration of 1.8 mg/mL was applied to the grids, blotted for 2.5 s at a relative humidity of 

100%, and plunge-frozen in liquid ethane using an FEI Vitrobot Mark 2 system (FEI Company). 

Two image sets were collected. The first dataset was collected using defocus phase contrast on 

an FEI Tecnai F30 microscope (FEI Company) operating at 300 kV with a K2 Summit camera 

(Gatan, Inc.) at a nominal magnification of 31,000× in superresolution mode with a pixel size of 

0.636 Å using SerialEM software (Mastronarde Group). A total of 40 frames at 200 ms per frame 

were recorded for each image at a camera dose rate of 8 electrons per pixel per second. A total of 

342,910 particles covering a defocus range from −0.8 to −2.8 μM were used to determine an 

initial 6.0-Å resolution map that allowed a polyalanine model to be built (Table 2.1). A higher 

resolution dataset was collected using an FEI Titan Krios equipped with a Volta phase plate 
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(VPP), GatanEnergy filter, and K2 Summit camera (Gatan, Inc.). Data were collected at a 

nominal magnification of 105,000× in superresolution mode, and a total of 64,096 individual 

particle images at a fixed target defocus of −0.5 μm were used to determine the structure at a 

resolution of 4.9 Å (Table 2.1).  

 

 

Table 2.1. Cryo-EM data collection, 3D reconstruction and model building 

Data Collection and Processing 

Microscope FEI Tecnai F30 FEI Titan Krios 

Voltage (kV) 300 300 

Camera (mode) Gatan K2 Summit 

(40 frame super-res 

movies) 

Gatan K2 Summit 

(40 frame super-res movies) 

Target Defocus (μm) -0.8 to -2.8 -0.5  

Volta Phase Plate 

Pixel size (Å) 0.6355  0.6920 

Imposed symmetry C2 C2 

Electron dose (e-/ Å 2) 45.5 40.8 

Initial particle images 499,157 169,655 

Final particle images 342,910 64,096 

Map resolution (Å) FSC 0.143 

    Max local resolution (Å) 

6.0 Å 

4.8 Å 

4.9 Å 

4.5 Å 

Model Building and Refinement 

Map sharpening B factor (Å2) -800 -400 

Protein residues (expected) 1388 (1424)* 1388 (1424) 

R.M.S. Z score 

   Bond Lengths (# Z>2)  

   Bond Angles (# Z>2) 

 
 

0.30 (2) 

0.44 (6) 

Validation 

  MolProbity score 

  Clashscore 

  EMRinger score 

  Poor rotamers (%) 

 

 

 

1.98 

7.99 

0.82 

0.00 

Ramachandran plot 

  Favored (%) 

  Outliers (%) 

 
 

90.1 

0.0 
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3. EM data processing 

The Tecnai F30 dataset, consisting of a total of 9,691 micrographs in 3 groups, was 

selected for initial processing after motion correction using MotionCor2 and contrast transfer 

function (CTF) estimation with Gctf. Non–dose-weighted micrographs were used for CTF 

estimation, and dose-weighted micrographs were used for all other processing. Approximately 

1,000 manually picked particles from each group were used to generate 2× binned templates 

(2.542-Å pixel size), which were used for autopicking in RELION. Autopicked particles were 

manually screened, and 499,167 particles were extracted for further processing in cryoSPARC. 

2-dimensional (2D) classification and selection yielded 342,910 particles that were then used for 

initial model construction and auto-refinement. Auto-refinement and masking with C2 symmetry 

yielded a map with a resolution of 6.0 Å by gold standard Fourier shell correlation (GSFSC) 

corrected for the effects of masking. Local resolution estimation in cryoSPARC indicated that 

the core regions have resolutions ranging from 4.5 to 6.0 Å. 

The Titan Krios dataset consisted of a total of 2,408 micrographs that were motion-

corrected using MotionCor2, and CTFs were estimated using Gctf. Results were imported into 

RELION 2.1. A total of 1,126 corrected micrographs were selected for further processing after 

screening for excessive motion and poor or poorly estimated CTFs. A total of 1,134 particles 

were manually picked and classified in 2 dimensions, and the selected templates were used to 

auto-pick 372,278 particles. Further screening resulted in the selection of 650 micrographs 

containing 169,655 particles for additional processing. The 2× binned (2.76-Å pixel size)  

particles were extracted and processed through 2 rounds of 2D classification and selection, 

resulting in 64,096 remaining particles. 3-dimensional (3D) auto-refinement with C2 symmetry 

using these particles and an initial model from the previous defocus contrast refinement yielded a 
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model with a resolution of 7.4 Å. Re-extraction with unbinned pixels and subsequent refinement 

led to no improvement in resolution at this stage. 3D classification into 10 classes and subset 

selection yielded 5 subsets (best single class, best 2 classes, best 5 classes, and all classes) that 

were used for another round of re-extraction and auto-refinement. The best resolution resulted 

from using all 64,096 particles and was unchanged at 7.4 Å. Masking and post-processing 

resulted in an estimated resolution of 6 Å. At this point, the 64,096 extracted particles were 

transferred to cryoSPARC, and subsequent processing was performed in cryoSPARC. 3D auto-

refinement with C2 symmetry using all 64,096 particles and an initial model constructed using a 

subset of 16,438 selected particles resulted in a GSFSC estimated resolution of 4.9 Å. The auto-

refined, unsharpened map was further sharpened with a B-factors ranging from −350 to −600 out 

to a cutoff of 3.5 Å for modeling, and a map with a B-factor of −530 was used for subsequent 

model building and refinement. 

4. Model building and refinement 

 An initial polyalanine model was built using the 6.0-Å resolution map with multiple 

rounds of real-space refinement in Phenix/Coot (7, 8). To determine the absolute hand at this 

resolution, the initial and inverted models were utilized for molecular replacement using an X-

ray diffraction dataset that extended to 9 Å in resolution. Only one model provided a solution to 

the molecular replacement search. Subsequent use of this initial model and the observation of the 

helical hand in the 4.9-Å resolution map further confirmed the correctness of the assigned hand. 

The full atomic model was built into the higher resolution map using multiple rounds of building 

and real-space refinement in Coot and Phenix. The density maps within the transmembrane (TM) 

region were of sufficient quality to readily identify large aromatic side chains and helped to 

confirm the correct sequence registration. Comparison with the recently determined structures of 

file:///C:/Users/Noah/Desktop/grad/diss/ch2osca.docx%23_ENREF_7
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AtOSCA1.2 (9-11) further confirmed the correctness of our model despite the lower calculated 

overall resolution of our map.  

5. Image processing 

 Motion-corrected projections with a pixel size of 1.271 Å (F30) and 1.384 Å (Titan 

Krios), with and without dose weighting, were constructed using MotionCor2 (12) with 2× 

binning and grouping. The CTF estimation was performed using Gctf (13), followed by manual 

selection to remove micrographs with poor or incorrectly fit CTF, poor astigmatism, and 

contamination. Manual and semiautomated particle picking was done using RELION 2.1 (14), 

followed by sorting and another round of manual overreading to remove low-quality 

micrographs. Subsequent refinements were carried out in RELION or cryoSPARC (15). Local 

resolution estimation was performed using cryoSPARC or ResMap (16).  

6. Hydrogen-deuterium exchange mass spectrometry of OsOSCA1.2 

 Hydrogen-deuterium exchange mass spectrometry (HDX-MS) measurements were made 

using a Synapt G2Si system (Waters Corporation). Deuterium exchange reactions were carried 

out by a Leap HDX PAL autosampler (Leap Technologies). The deuterated buffer was prepared 

by lyophilizing 10 mL of 20 mM Hepes (pH 8.0) and 150 mM NaCl. The lyophilized buffer was 

resuspended in 10 mL of 99.96% D2O immediately before use, to which was added powdered n-

undecyl-β-D-maltopyranoside to a final concentration of 0.06% and cholesterol hemisuccinate to 

a final concentration of 0.01%. Each deuterium exchange time point (0 min, 1 min, 2.5 min, and 

5 min) was measured in triplicate. For each measurement, 4 μL of protein at a concentration of 5 

μM was mixed with 36 μL of D2O buffer at 25 °C. Deuterium exchange was quenched by 

combining 35 μL of the deuterated sample with 65 μL of 0.1% formic acid and 3 M 

guanidinium-HCl for 1 min at 1 °C. The quenched sample was then injected in a 50-μL sample 
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loop and digested by an in-line pepsin column (Pierce, Inc.) at 15 °C. The resulting peptides 

were captured on a BEH C4 Vanguard precolumn at a flow rate of 400 μL·s−1, separated by 

analytical chromatography (Acquity UPLC BEH C4, 1.7 μM, 1.0 × 50 mm; Waters Corporation) 

using 7–85% acetonitrile in 0.1% formic acid over 7.5 min, and analyzed in a Waters Synapt 

G2Si quadrupole time-of-flight mass spectrometer following electrospray injection.  

Data were collected in Mobility [Electrospray ionization positive ion detection (ESI+) 

mode, mass acquisition range of 200–2,000 mass-to-charge ratio (m/z), scan time of 0.4 s]. 

Continuous lock mass correction was performed using the infusion of leu-enkephalin (m/z = 

56.277) every 30 s (mass accuracy of 1 ppm for calibration standard). For peptide identification, 

data were collected in MSE (mobility ESI+) mode. Peptide masses were identified following 

triplicate analysis of 10 μM OsOSCA1.2, and the data were analyzed using PLGS 2.5 (Waters 

Corporation). Peptide masses were identified using a minimal number of 250 ion counts for low-

energy peptides and 50 ion counts for their fragment ions. The following parameters were used 

to filter peptide sequence matches: minimum products per amino acid of 0.2, a minimum score 

of 7, maximum monoisotopic mass (MH+) error of 5 ppm, and a retention time relative standard 

deviation of 5%, and the peptides had to be present in 2 of the 3 peptide identification runs 

collected. After identification in PLGS, peptides were analyzed in DynamX 3.0 (Waters 

Corporation). Deuterium uptake for each peptide was calculated by comparing the centroids of 

the mass envelopes of the deuterated samples with the undeuterated controls. To account for 

back-exchange and systematic autosampler sample handling differences, the uptake values 

measured at the 1-min time point were divided by 0.79. The longer 2.5-min and 5-min 

deuteration time point deuteration values were divided by 0.75. Data were plotted as a number of 

deuterons incorporated vs. time. The y-axis limit for each plot reflects the total number of amides 
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within the peptide that can possibly exchange. Each plot includes the peptide MH+ value, 

sequence, and sequential residue numbering. 

C. Results 

As we were interested in determining whether and how osmolality caused OSCA proteins 

to respond to osmotic stress in crop plants, we screened 5 such putative OSCA channels from 

rice, overexpressing them as TEV protease cleavable GFP fusions in Pichia pastoris. The Oryza 

sativa gene (annotated as OsOSCA1.2, GenBank KJ920372.1) was found to have both high 

levels of protein expression and desirable properties during purification, and was therefore 

chosen for further characterization.  

1. Structure of OsOSCA1.2    

We determined a molecular structure of OsOSCA1.2 by single-particle cryogenic-

electron microscopy (cryo-EM) to an overall resolution of 4.9 Å and local resolution in the 

membrane of 4.5 Å, revealing a dimer of C2 symmetry-related subunits. The overall dimensions 

of the protein are 140 Å × 55 Å × 85 Å. Each protomer is composed of 11 TM spanning 

segments, associated extracellular and intracellular loops, and an intracellular soluble domain 

(Fig. 2.1A). All 11 TM helices and the soluble domain are well resolved in our cryo-EM maps, 

and large side chains provided suitable markers for ensuring proper sequence registration during 

atomic model building. The final atomic model comprises 1,388 of the expected 1,424 residues 

with good geometry and an EMRinger (17) score of 0. 89. 
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According to the Transporter Classification (TC) Database (18), OsOSCA1.2 belongs to 

what is annotated as the calcium-permeable stress-gated cation channel family (TC accession no. 

1.A.17.5) within the ANO superfamily (TC accession no. 1.A.17). This classification indicates 

that OsOSCA1.2 is distantly related to members of the ANO family (TC accession no. 1.A.17.1) 

for which high-resolution 3-dimensional structures are available (19, 20). Following a recently 

published bioinformatics approach (6), we had further predicted that OsOSCA1.2 had 11 TMs 

and the eighth hydrophobicity peak is composed of 2 TMs (Fig. 2.1B) based on hydropathy 

analysis and comparison of regions with the fungal homolog Nectria hematococca TMEM16 

(NhTMEM16) (19). For convenience, we have kept the numbering convention of TMs consistent 

with NhTMEM16, and we thus refer to OsOSCA1.2’s additional N-terminal TM as TM0 (Fig. 

2.1C-D). Despite a relatively low degree of sequence similarity, we later confirmed that 

OsOSCA1.2 shares significant structural homology to the TMEM proteins with respect to 10 of 

Figure 2.1. Cryo-EM structure of the OsOSCA1.2 ion channel. (A) From left to 

right, (1) Parallel to membrane plane view of unsharpened cryoEM density map 

used for initial chain tracing, (2-4) sharpened 4.9 Å map used for model building 

and refinement: (2) membrane plane view, (3) extracellular view, and (4) 

intracellular view. (B) Protein topology of OsOSCA1.2. View of OsOSCA1.2 

model from (C) the plane of the cell membrane and (D) from the extracellular side. 
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the 11 TM regions, corresponding to TM1–TM10 in the mouse TMEM16A (mTMEM16A) 

structures (20).  

TM0 threads from the extracellular N-terminal end of the protein through the membrane, 

linking to TM1 via an ∼50-residue strand that is likely conformationally flexible. This portion of 

the protein is the only region not fully resolved in our density maps (Fig. 2.1B–D). A short helix 

on the cytoplasmic side then precedes TM1, and the C-terminal end of TM2 leads into the 

soluble cytosolic region of ∼170 residues. The remaining helices represent the ANO domain, 

encapsulating the predicted TM transport pathway. TM3 and TM4 are located on the outer edge 

of the TM region and are tilted with respect to the membrane. TM7 and TM8 are shorter in 

length and are the only TMs that do not span the entire length of the membrane, with the 

connecting loop (residues 578–583) being embedded in the membrane and consisting of 

hydrophobic residues. 

The soluble domain is located on the intracellular side of the protein joining TM2 and 

TM3, and makes important structural contacts with the C terminus (Fig. 2.1B–D). A core 

globular domain comprises a 4-stranded β-sheet buttressed by 2 short helices that interestingly 

forms a canonical RNA recognition motif (RRM) fold (21). Unlike true RNA binding RRM 

proteins, OsOSCA1.2 includes a fusion of a distinct 70-residue appendage between β-strands 2 

and 3. These long extended helical arms protrude out from the RRM domain and are located 

proximal to and in the plane of what would be the inner-leaflet side of the plasma membrane. 
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2. OsOSCA1.2 experimental dynamics 

To further understand and probe local conformational dynamics of OsOSCA1.2, we used 

HDX-MS. HDX-MS measurements using detergent-solubilized OsOSCA1.2 protein resulted in 

the identification of 32 peptides, which constitute 34.5% coverage of the molecule, including the 

helical arms that were predicted to dynamically couple to the presumed gating helix TM6 and 

most likely to be responsible for sensing lateral tension in the membrane (Fig. 2.2A).  

Figure 2.2. Computational and experimental dynamics of OsOSCA1.2. (A) Relative 

uptake after 5 minutes of exchange. Regions colored gray yielded no detectable peptide 

fragments. (B) Close-up view of the extended and gating helix. Uptake plots for selected 

peptides are shown. (C) Results of the Dynomics suite. Panels show a color-coded map 

showing signal communication (left) and receiving (right) efficiency. Regions colored red 

are more active while those blue inactive with regards to molecular dynamics prediction.  
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The helix closest to the inner leaflet side of the membrane was covered by 2 peptides 

(corresponding to residues 244–257 and 245–257). Deuterium incorporation profiles revealed 

that this region was tightly protected from the exchange, indicative of rigid dynamics or 

association with a nearby surface (Fig. 2.2B). The following segment was also covered by 2 

peptides (residues 258–279 and 258–286), which correspond to the C-terminal end of the 

protected helix and a nearby loop in our structure. This region was ∼25% saturated with 

deuterium nuclei at the earliest measured time point of 1 min, indicating rapid exchange 

associated with conformational flexibility. The remainder of this segment increased deuterium 

content by ∼5% over 5 min, suggesting conformational motions that gradually increased 

exposure to solvent. The helix farther from the membrane was covered by 3 peptides (residues 

287–320, 289–320, and 305–320) and similarly displayed rapidly exchanging amides and 

ongoing deuterium exchange.  

Mass spectra from peptides corresponding to the unstructured loop and helix farther from 

the membrane all displayed bimodal deuterium uptake, which was more prominent among 

peptides corresponding to the loop (Fig. 2.3). The ongoing dynamics stand in sharp contrast to 

the rigidity of the helix (residues 241–266) closer to the membrane. Despite being spatially and 

sequentially near each other, these 2 intracellular helices have very different dynamic properties.  

3. OsOSCA1.2 computational dynamics 

 The DynOmics suite allows prediction and identification of candidate functional sites, 

signal transduction, and potentially allosteric communication mechanisms, leveraging rapidly 

growing structural proteomics data (22). The suite integrates 2 widely used elastic network 

models while taking account of the molecular environment like the lipid bilayer providing 
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collective dynamics of structural resolved systems. We used DynOmics to do molecular dynamic 

simulations on our OsOSCA1.2 dimer model after embedding in the membrane, looking for 

regions that could potentially serve as functionally important sensors, broadcasters, and receivers 

(Fig. 2.2C). Our results revealed that the extended intracellular helical arms could communicate 

conformational perturbations, having the propensity to act as a broadcaster/receiver, extending to 

the central core sheet structure of the soluble domain and, more interestingly, TM6, which is 

proposed to be the transport pathway gating helix in related structures (9-11, 19, 20). 

Figure 2.3. Bimodal exchange in OsOSCA1.2. Representative 

mass spectra displaying bimodal deuterium uptake. Spectra are 

shown in triplicate following 0 sec, 30 sec, 1 min and 5 min of 

exchange. 
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D. Discussion 

OsOSCA1.2 shares overall protein fold and topology with other recently determined 

homologous structures from A. thaliana (9-11). A superposition of these structures with 

OsOSCA1.2 showed a significant difference (root-mean-square deviation of ∼3–4 Å) for the 

transport pathway-lining helices (TM3–TM7), along with TM0 and TM8 (Fig. 2.4A). When 

comparing intracellular soluble domains, the extended helical arms of OsOSCA1.2 had 

noticeable differences compared with those of AtOSCA1 (Fig. 2.4A). These differences are 

likely due to a combination of conformational flexibility inherent in the detergent-solubilized 

protein and structural difference between species.  

OsOSCA1.2 also shares structural homology to a Ca2+- activated chloride channel 

(mTMEM16A) and a phospholipid scramblase (NhTMEM16) of the TMEM family when 

comparing monomeric TM domain regions. However, they differ significantly in the regions of 

extracellular and intracellular loops and domains, as well as in the intermolecular packing 

arrangement of the respective dimers. The dimer interface of mTMEM16A buries less surface 

area (∼2%) compared with OsOSCA1.2, and most of the interactions are mediated through the 

TMs. The intracellular domains of mTMEM16A and NhTMEM16, which are formed by the N 

and C termini of the molecule, do not contribute to the formation of the dimer (Fig. 2.4B). In 

contrast, OsOSCA1.2 dimerizes mostly through interactions formed between the opposing 

intracellular soluble domains. This distinct dimeric packing resulted in a more pronounced offset 

between protomers that is ∼20 Å wider for OsOSCA1.2 compared with NhTMEM16 or 

mTMEM16A. In our OsOSCA1.2 structure, the extended helical arm in the intracellular soluble 

domain makes hydrophobic contacts with the loop connecting the gating helix TM6 (Fig. 2.4C), 

suggesting a possible role for the helical “arms” in sensing the membrane tension and, in turn, 
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transmitting these conformational/mechanical changes to gate transport activity (Fig. 2.4D). This 

feature is missing in TMEM16 chloride channels, possibly as Ca2+ ions control gating.  

Experimental and computational dynamic studies using our OsOSCA1.2 model provide a 

potential molecular structural basis of how OsOSCA1.2 couples osmotic stress to induce 

transport gating in the membrane-spanning region. Taken together, both studies predict and 

support a model in which the extended helical arms (residues 241–266) have the mechanical 

rigidity and propensity to act as a broadcaster/receiver,  ransmitting conformational changes 

caused by lateral tension in the membrane to TM6 (Figs. 2.2 and 2.4F), which is linked to the 

predicted gating structure. In addition, information from HDX-MS revealed the presence of 

bimodal deuterium exchange throughout the OsOSCA1.2, most prominently within the helical 

arms (residues 258–320) and some extracellular loops (residues 489–511). The bimodal 

exchange is indicative of multiple correlated unfolding processes occurring in the observed 

regions (23). Interestingly, in each peptide where bimodal peaks were observed, the 2 peaks 

remained equal in intensity over the entire course of the experiment, suggesting at least 2 distinct 

conformational states occupied by the molecular ensemble at equilibrium in the resting state. 

Several important questions remain regarding these OSCA proteins and their role in 

plants. For example, the putative permeant substrates, including calcium and other possible 

substrates transported by OsOSCA1.2 or by other members within their greater family, are still 

unknown. It will certainly be a challenge to assign function to all of these proteins individually 

as these proteins are members of large gene families. Although we present a structure of 

OsOSCA1.2 along with computational and experimental dynamics, the detailed functional 

mechanism(s) coupling lateral tension in the membrane by OsOSCA1.2 to gating remains to be 

addressed in future studies. Furthermore, upstream regulatory proteins, the nature of the 
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permeant substrate species, and how they are coupled to downstream signaling events remain to 

be determined.  

 

  

Figure 2.4. Structural comparisons of OsOSCA1.2 with other TMEM and OSCA 

structures. (A) Superposition of OsOSCA1.2 and AtOSCA1 (PDB: PYD1). TMs 1, 2, 9, 

and 10 (shown in gray) close to lipid-filled cleft are nearly superimposable and have little 

relative movement. Pore-lining helices (TMs 3-7) showed significant movement along with 

TM0 and TM8 (shown in red). (B) The mTMEM16A soluble domains from the intercellular 

side are separated. (C) OsOSCA1.2 intracellular soluble domains are together and 

communicate with channel gating helix TM6. (D) The general mechanism of OsOSCA1.2 

shown in the plane of the lipid membrane. Lateral tension on the inner leaflet side of the 

lipid bilayer causes a conformational change in the extended helices of the soluble domain, 

which is coupled to the gating helix TM6 opening pore. (E) Calcium binding site residues of 

mTMEM16A. Calcium ions are shown as red spheres. (F) The corresponding region of 

OsOSCA1.2 with charged and polar residues are shown in cyan. 
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Chapter II, in part, is a reprint that the dissertation author significantly contributed to as 

both a researcher and an author. The material appears in the Proceedings of the National 

Academy of Sciences in the United States of America. (Maity, K., Heumann, J.M., McGrath, 

A.P., Kopcho, N.J., Hsu, P.K., Lee, C.W., Mapes, J.H., Garza, D., Krishnan, S., Morgan, G.P., 

Hendargo, K.J., Klose, T., Rees, S.D., Mendrano-Soto, A., Saier, M.H., Pineros, M., Komives, 

E.A, Schroeder, J.I., Chang, G., Stowell, M.H.B. (2019) “Cryo-EM structure of OSCA1.2 from 

Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating” 

PNAS. 116:14309-14318.) 
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A.  Introduction 

Heterotrimeric G proteins act as molecular switches that gate the flow of information 

from extracellular cues to intracellular effectors that control cell behavior(1). Canonically, 

heterotrimeric G protein signaling is initiated exclusively at the plasma membrane where 

agonist-activated G-Protein Coupled Receptors (GPCRs) activate Gαβγ trimers by promoting the 

exchange of GDP for GTP on the Gα subunit (1). Heterotrimeric G proteins are expressed in 

virtually all cell and tissue types in the body and are involved in most physiologic, and many 

pathologic, processes; thus, the molecular mechanism and structural determinants of G protein 

activation and action has been a top priority in the field, yielding over 70 publicly available 

structures in various conformations and complex composition. The structural basis for GPCR-

dependent G protein activation had challenged the field for decades, but in the past 8 years, 

breakthrough structural studies have demonstrated that GPCR-dependent G protein activation 

occurs via direct disruption the hydrophobic core of the Gα GTPase domain by removal of the C-

terminal α5 helix and insertion of the GPCR’s intracellular loop 2 (5-8). 

 In contrast, GPCR-independent activation of heterotrimeric G proteins can occur 

downstream of non-GPCRs via a novel family of Guanine-nucleotide Exchange Modulators 

(GEMs) (9, 10). Members of the GEM family are cytosolic proteins that are defined by their 

unique ability to act as Guanine-nucleotide Exchange Factors (GEFs) to activate Gαi and to act 

as Guanine-nucleotide Dissociation Inhibitors (GDIs) to inhibit Gαs using the same 

evolutionarily conserved GEM motif (11, 12), identified based on its homology to the synthetic 

peptide KB752 (a peptide that can bind and activate Gαi) (13). GEMs activate heterotrimeric G 

proteins downstream diverse classes of receptors, resulting in spatio-temporal signaling that is 

distinct from GPCR-driven G protein signaling. Furthermore, GEM-dependent G protein 
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activation has been shown to play a pivotal role in pathophysiology (14), including cancer, organ 

fibrosis, and diabetes. A structural understanding of the mechanism of GEM-dependent G 

protein activation would be invaluable towards pharmacologic targeting of GEMs to treat these 

diseases. Despite vast progress in understanding GEM biology and demonstrable translational 

relevance of dysregulated GEM signaling in disease, structural mechanistic insights into GEM-

dependent G protein activation is lacking. This study fills this void, providing high resolution 

insight into GPCR-independent, GEM-driven G protein activation 

B.  Materials and Methods 

1.  Plasmid Constructs and Mutagenesis 

All restriction endonucleases and Escherichia coli strain DH5α were purchased from 

New England Biolabs (Ipswich, MA). For crystallization, biochemical experiments, and 

HDXMS, rat Gαi3 (Uniprot P08753-1) was cloned into a pET28b vector using NdeI and XhoI 

restriction sites, resulting in an N-terminal 6xHis tag separated from the Gαi3 protein by the 

sequence SSGLVPRGSHM. The nucleotide sequences encoding for the tag and the linker was: 

ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAG

CCAT- followed by the start ATG codon of wild-type (WT) Gαi3; this construct is referred to 

6xHis-Gαi3. In the construct used for crystallization, the N-terminal 25 amino acids of Gαi3 

were removed to facilitate crystallization as previously done (13); this construct will be referred 

to as 6xHis-ΔN25-Gαi3. For GST pull down assays, full length Gαi3 was cloned into a pGEX 

vector with an N-terminal GST-tag, resulting in a GST-Gαi3. All site-directed mutagenesis (Gai3 

Q204A, R208Q, K209M, K210M, W211A, H213F, F215A, and V218A, were carried out using 

QuikChange II site-directed mutagenesis kit (Agilent Technologies; Santa Clara, CA; 

Ca#200524) as per the manufacturer’s protocol. In the main text, all three constructs (6xHis-
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Gαi3, 6xHis-ΔN25-Gαi3, and GST-Gαi3) are referred to as Gαi; in the methods below, specific 

constructs used in each experiment are detailed.  

2.  Peptides 

Peptides were synthesized by three companies independently [LifeTein (Somerset, NJ), 

Chempeptide (Shanghai, China), and AbClonal (Woburn, MA)] and all displayed comparable 

effects in assays. Peptides were synthesized with L-amino acids at >95% purity and kept frozen 

at -80 °C as 10 mM stocks in DMSO. 

KB-752 peptide sequence: 1-NH2-SRVTWYDFLMEDTKSR-COOH-16 

GIV-WT GEM-motif peptide sequence: 1671-NH2-

KTGSPGSEVVTLQQFLEESNKLTSVQIKSSS-COOH-1701 

GIV-Q1683A GEM-motif peptide sequence: 1671-NH2-

KTGSPGSEVVTLAQFLEESNKLTSVQIKSSS –COOH-1701 

3. Expression and Purification of Gαi3 

6xHis-tagged Gαi3 constructs (6xHis-Gαi3, 6xHis-ΔN25-Gαi3, or single-point mutants 

of thereof) were transformed into E. coli BL21 (DE3; Invitrogen) cells. Cells were grown in 1 L 

flasks at 37 °C until OD reached 0.8-1.0, then induced overnight at 25 °C with 1 mM isopropyl 

β-d-1-thiogalactopyranoside (IPTG). Cells were harvested via centrifugation and lysed at 15,000 

PSI by a single pass through a cell disruptor (TS-Series; Constant Systems, Inc) in Running 

Buffer (RB; 50 mM NaH2PO4 pH 7.4, 300 mM NaCl, and 0.5 mM EDTA) supplemented with 2x 

Protease Inhibitors (Roche Life Science) and 10 mM imidazole. Cell debris was removed by 

ultracentrifugation at 45,000 ×g for 40 min, and the supernatant was loaded on a Ni–NTA His60 

Superflow resin (Qiagen) affinity column via fast protein liquid chromatography (AKTA, GE 

Life Sciences). The resin was washed with RB+60 mM imidazole, and eluted with RB+300 mM 
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imidazole. The eluted protein was concentrated at 1500 ×g (Amicon Ultra-15 30 MWCO 

centrifugal filter; Millipore) and subjected to size exclusion chromatography via Superdex 200 

resin (GE Healthcare) equilibrated with storage buffer (20 mM Tris-HCl pH 7.4, 20 mM NaCl, 1 

mM MgCl2, and 5% glycerol). Fractions from major peak were pooled, resulting in usually ~1-5 

mg/mL Gαi protein. Protein was then aliquoted, flash frozen, and stored at −80 °C. Protein 

concentration and purity were checked throughout purification via SDS-PAGE and comparison 

to known amounts of Bovine Serum Albumin (BSA). 

GST-alone and GST-tagged Gαi3 constructs (wild type and mutant proteins) were 

expressed and purified from Escherichia coli strain BL21 (DE3; Invitrogen) as described 

previously. Briefly, cells were grown in 1 L flasks at 37 °C until OD reached 0.8-1.0, then 

induced overnight at 25 °C with 1 mM IPTG. A bacterial pellet from 1 L of culture was 

resuspended in 10 ml of GST-lysis buffer (25 mM Tris-HCl, pH 7.5, 20 mM NaCl, 1 mM 

EDTA, 20% [vol/vol] glycerol, 1% [vol/vol] Triton X-100, 2× protease inhibitor cocktail 

[Complete EDTA-free; Roche Diagnostics]). Cell lysates were sonicated (4 × 20 s, 1 min 

between cycles) and then centrifuged at 12,000 × g at 4 °C for 20 min. Solubilized proteins were 

affinity purified on glutathione-Sepharose 4B beads (GE Healthcare) by incubation for 4 hrs at 4 

°C. Beads were washed 3 x with 50mM Tris pH 8 and then eluted with GST elution buffer (50 

mM Tris pH 8, 10 mM reduced glutathione). Eluted proteins were dialyzed overnight at 4 °C 

against phosphate-buffered saline (PBS), and stored at −80 °C in aliquots. 

4. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) of Gαi3  

HDX-MS measurements were made using a Synapt G2Si system (Waters Corporation). 

Deuterium exchange reactions were carried out by a Leap HDX PAL autosampler (Leap 

Technologies, Carrboro, NC). Deuterated buffer was prepared by lyophilizing 10 mL of 20 mM 
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Tris-HCl pH 7.4, 20 mM NaCl, 5 μM GDP and 5% glycerol and resuspending it in 10 mL 

99.96% D2O immediately before use. Each deuterium exchange time point (0 min, 1 min, 2.5 

min, 5 min) was measured in triplicate. For each measurement, 5 μL of 100 µM 6xHis-Gαi3 

protein [in storage buffer (20 mM Tris-HCl pH 7.4, 20 mM NaCl, 1 mM MgCl2, and 5% 

glycerol) was mixed with 55 μL of D2O buffer at 25 °C. Deuterium exchange was quenched by 

combining 50 μL of the deuterated sample with 50 μL of 0.1% formic acid and 3 M guanidinum-

HCl for 1 min at 1 °C. The quenched sample was then injected in a 50 μL sample loop and 

digested by an inline pepsin column (Pierce, Inc.) at 15 °C. The resulting peptides were captured 

on a BEH C18 Vanguard precolumn, separated by analytical chromatography (Acquity UPLC 

BEH C18, 1.7 μm, 1.0 × 50 mm, Waters Corporation) using 7−85% acetonitrile in 0.1% formic 

acid over 7.5 min, and analyzed in a Waters Synapt G2Si quadrupole time-of-flight mass 

spectrometer following electrospray injection. 

Data were collected in Mobility, ESI+ mode, mass acquisition range of 200−2000 (m/z), 

scan time 0.4 sec. Continuous lock mass correction was performed using infusion of leu-

enkephalin (m/z = 556.277) every 30 sec (mass accuracy of 1 ppm for calibration standard). For 

peptide identification, data were instead collected in MSE (mobility ESI+) mode. Peptides 

masses were identified following triplicate analysis of 10 μM Gαi3, and were analyzed using 

PLGS 2.5 (Waters Corporation). Peptides masses were identified using a minimum number of 

250 ion counts for low energy peptides and 50 ion counts for their fragment ions; with the 

additional constraint that peptide size was greater than 1500 Da. The following parameters were 

used to filter peptide sequence matches: minimum products per amino acid of 0.2, minimum 

score of 7, maximum MH+ error of 5 ppm, and a retention time RSD of 5%, and the peptides had 

to be present in two of the three ID runs collected. After identification in PLGS, peptides were 
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analyzed in DynamX 3.0 (Waters Corporation). Deuterium uptake for each peptide was 

calculated by comparing the centroids of the mass envelopes of the deuterated samples with the 

undeuterated controls. To account for back-exchange and systematic autosampler sample 

handling differences between the shorter 1 min and longer 2.5 min and 5 min deuteration times, 

the uptake and standard deviation values were divided by 0.79 and 0.75, respectively. Data were 

plotted as number of deuterons incorporated vs time. The Y-axis limit for each plot reflects the 

total number of amides within the peptide that could possibly have exchanged. Each plot 

includes the peptide MH+ value, sequence, and sequential residue numbering. 

5. Co-crystallization of Gαi3 with KB752 and GIV-GEM 

Purified 3 mg/mL 6xHis-ΔN25-Gαi3 (either freshly prepped or freeze-thawed once) was 

incubated overnight in storage buffer (20 mM Tris-HCl pH 7.4, 20 mM NaCl, 1 mM MgCl2, and 

5% glycerol) at a 3:1 (peptide:Gαi3) molar ratio at 4°C, then concentrated to ~15 mg/mL and set 

on 288-well Intelli-Plate trays (Art Robbins Instruments) in 1:1, 1.5:1, and 2:1 volume ratios 

with mother liquor (12-16% PEG 3350, 0.2 M NH4Cl) at room temperature. Crystals appeared 

after 1-2 days and grew to full size in 5-7 days. Crystals were cryoprotected by soaking in 

mother liquor supplemented with 10% glycerol and flash-frozen with liquid nitrogen. 

6. X-ray data collection and structure determination of gαi3 peptide co-crystal 

Structures 

 X-ray diffraction data were collected at 100 K at the Lawrence Berkeley National 

Laboratory Advanced Light Source (8.2.2) and Stanford Synchrotron Radiation Lightsource (9-

2) at a single wavelength. All diffraction data were indexed and integrated with MOSFLM, 

processed with AIMLESS, and truncated with CTRUNCATE within the CCP4 suite of programs 

(2, 15, 16). Phases were estimated via molecular replacement in Phaser (17), using a previously 
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published model of human Gαi1 (PDB 1Y3A, for Gαi3∙GDP with KB-752) or human Gαi3 

(PDB 4G5R, for Gαi3∙GDP with GIV-GEM) as a search model. Models underwent rigid-body 

and restrained positional refinement using PHENIX.REFINE in the PHENIX software suite (18) 

against a maximum likelihood target function, alternated with manual inspection against electron 

density maps in Coot (19). Peptides were manually modeled in Coot and refined in the final 

rounds of refinement, which also included the application of hydrogens to their riding positions 

and simulated annealing. The resulting refinement statistics for each model are included in 

Table3.1. Figures displaying crystal packing were prepared using PyMOL 

(http://www.pymol.org), and atomic coordinates and structure factors were deposited in the 

Protein Data Bank (accession codes 6MHE and 6MHF for KB752 and GIV-GEM co-crystal 

structures, respectively). 
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¹Values in parentheses are for the highest-resolution shells. 

Table 3.1: X-ray crystallography data collection and refinement statistics. 

Data Collection Gɑi3+GIV-GEM (PDB 

6MHF) 

Gɑi3+KB752 (PDB 

6MHE) 

Space group P4₃2₁2 P4₃2₁2 

Cell dimensions   

a,b,c (Å) 83.78, 83.78, 141.37 83.24, 83.24, 133.83 

ɑ,β,ɣ (°) 90, 90, 90 90, 90, 90 

   

Beamline ALS-8.2.2 ALS-8.2.2 

Wavelength 0.99997 0.99999 

Resolution (Å) 72.08-2.00 66.91-2.20 

   

Rmerge (%) 2.3 (95.7)¹ 5.0 (84.9)¹ 

Rpim (%) 1.7 (79.6)¹ 3.3 (60.3)¹ 

I/σ (I) 29.5 (1.4)¹ 15.1 (1.6)¹ 

CC1/2 0.999 (0.446)¹ 0.994 (0.131)¹ 

Completeness (%) 93.9 (99.7)¹ 94.0 (99.7)¹ 

Redundancy 4.0 (4.4)¹ 3.7 (3.7)¹ 

Observed reflections 147287 100669 

Unique reflections 34165 24419 

   

Refinement   

Resolution (Å) 72.08-2.00 (2.05-2.00)¹ 66.91-2.20 (2.27-2.20)¹ 

Reflections (working set) 34765 24594 

Reflections (test set) 1738 1229 

Rwork/Rfree 0.20/0.24 0.23/0.26 

R.m.s deviations   

Bond lengths (Å) 0.002 0.002 

Bond angles (°) 0.515 0.504 

Ramachandran statistics   

Outliers % 0.29 0.29 

Favored % 98.84 98.82 

Rotamer Outliers % 1.61 1.66 

Cβ Deviations 0 0 
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7. Cell culture 

Cells were cultured according to American Type Culture Collection (ATCC) guidelines. 

Briefly, HeLa cells were grown in high glucose DMEM (Sigma; Ca#D5796) supplemented with 

10% (vol/vol) FBS (HyClone; Ca#SH30071.03) and penicillin-streptomycin-glutamine (Gibco; 

Ca#10378-016). For cell lysates, HeLa cells were grown on 10 cm plates and harvested by 

scraping into 0.5 mL of lysis buffer [20 mM HEPES pH 7.4, 5 mM Mg-acetate, 125 mM K-

acetate, 0.4% Triton X-100, 1 mM DTT, 1× Complete Protease Inhibitor Mixture (Roche; 

Ca#11873580001), and 1× Phosphatase Inhibitor Mixtures 2 and 3 (Sigma; Ca#P5726 and 

P0044, respectively)] on ice. Cell lysates were incubated for 10 min at 4 °C and were centrifuged 

at 12,000 ×g for 10 min. Clarified cell lysates were subsequently used in glutathione-S-

transferase (GST) pulldown assays. 

8. In vitro GST pulldown assays 

Purified GST-Gαi3 or GST-alone (5 µg) were immobilized on glutathione-Sepharose 

beads and incubated with binding buffer [50 mM Tris-HCl (pH 7.4), 100 mM NaCl, 0.4% 

(vol/vol) Nonidet P-40, 10 mM MgCl2, 5 mM EDTA, 30 µM GDP, 2 mM DTT, 1× Complete 

Protease Inhibitor Mixture (Roche; Ca#11873580001)] for 90 min at room temperature as 

described before (20-23). Lysates (~250 µg protein) of HeLa cells were added to each tube, and 

binding reactions were carried out for 4 hr at 4 ºC with constant tumbling in binding buffer 

[50 mM Tris-HCl (pH 7.4), 100 mM NaCl, 0.4% (vol/vol) Nonidet P-40, 10 mM MgCl2, 5 mM 

EDTA, 30 µM GDP, 2 mM DTT]. Beads were washed (4X) with 1 mL of wash buffer [4.3 mM 

Na2HPO4, 1.4 mM KH2PO4 (pH 7.4), 137 mM NaCl, 2.7 mM KCl, 0.1% (vol/vol) Tween-20, 

10 mM MgCl2, 5 mM EDTA, 30 µM GDP, 2 mM DTT] and boiled in Laemmli's sample buffer 

for 10 min. For immunoblotting, rabbit anti-Gβ primary antibody (M-14; Ca#sc-261) and anti-
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GIV-CT primary antibody (T-13; Ca#sc-133371) were obtained from Santa Cruz Biotechnology 

(Dallas, TX). IRDye 680RD goat anti-rabbit secondary antibody (Ca#926-68071) and IRDye 

800 goat anti-mouse secondary antibody (Ca#926-32210) were from Li-Cor Biosciences 

(Lincoln, NE). Protein samples were separated by SDS-PAGE and transferred to PVDF 

membranes (Millipore). Membranes were blocked with PBS supplemented with 5% nonfat milk 

before incubation with primary antibodies (1:500 dilutions overnight at 4 ºC). Blots were washed 

3 times in PBS-T [4.3 mM Na2HPO4, 1.4 mM KH2PO4 (pH 7.4), 137 mM NaCl, 2.7 mM KCl, 

0.1% (vol/vol) Tween-20] and incubated with secondary antibodies (1:20,000 dilutions at room 

temperature for 1 hr). Blots were then washed 3 times in PBS-T and once with PBS before 

infrared imaging following the manufacturer's protocols using an Odyssey imaging system (Li-

Cor Biosciences). 

9. Molecular modeling 

Models of Gαi•GDP with (pS1674)GIV-GEM, Gαi•GDP with Daple-GEM, and  

Gαi•GDP with NUCB1-GEM were constructed by homology with the structure of Gαi•GDP 

with GIV-GEM using ICM versions 3.8-6 to 3.8-7a (Molsoft LLC, San Diego, CA).  

The GEM motif peptides from (pS1674)GIV (1671-KTG-pS1674-

PGSEVVTLQQFLEESNK-1691) and Daple (1663-ASPSSEMVTLEEFLEESNR-1681) were 

built ab initio; the GEM motif peptide from NUCB1 (305-DTNQDRLVTLEEFLASTQRKEF-

326) was extracted from the NMR structure of NUCB1 (PDB 1SNL). The backbone atoms of the 

peptides were confined to the crystallographic coordinates of the corresponding atoms of GIV-

GEM (residues 1676-GSEVVTLQQFLEES-1689 only) via a set of harmonic distance restraints 

(tethers); the peptide flanks and side-chains were kept unrestrained. Full-atom conformational 

sampling of the peptides (backbone, side-chains, and positional variables) and the surrounding 
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side-chains of Gαi was performed using 5×106 steps of biased probability Monte Carlo 

optimization (24) as implemented in ICM, with the repulsive part of the Van der Waals potential 

capped at 20 kJ/mol. The top scoring pose of each peptide was selected for analysis. 

10. Gαi3-limited proteolysis assay 

6xHis-Gαi3 or 6xHis-ΔN25-Gαi3 (0.25 mg/ml) was incubated for 150 min at 30 °C in 

buffer (20 mM HEPES pH 8, 100 mM NaCl, 1 mM EDTA, 10 mM MgCl2, and 1 mM DTT) 

supplemented with GDP (30 μM) or GTPγS (30 μM). After incubation trypsin was added to the 

tubes (final concentration 6.25 μg/ml) and samples were incubated for 10 min at 30 °C. Samples 

were rapidly transferred to ice, reactions were stopped by the addition of Laemmli sample buffer, 

after which the samples were boiled for 10 min. Proteins were separated by SDS–PAGE and 

stained with Coomassie blue. 

11. MANT-GTPγS incorporation assays 

For Gαi3 incorporation assays in the presence of peptide, peptide was pre-bound to Gαi3 

prior to running the assay. To equilibrate and pre-bind peptide to Gαi3, 111 nM His-Gαi3 WT or 

mutants were first incubated in reaction buffer (20 mM HEPES pH 8, 100 mM NaCl, 1 mM 

EDTA, 10 mM MgCl2, and 1 mM DTT) in 30 °C water bath for 30 min with or without varying 

concentrations of peptide in a final incubation volume of 250 μL. After equilibration, 72 μL 

protein-peptide complexes were transferred to a pre-warmed 384-well black flat-bottom plate (in 

triplicates). The reaction was initiated by injecting 8 μL of 250 nM MANT-GTPγS (Abcam, 

Cambridge, MA) in each well for a final reaction volume of 80 μL and final concentrations of 

100 nM Gαi3, 25 nM MANT-GTPγS and the indicated concentrations of the peptide. MANT-

GTPγS incorporation into Gαi3 was quantified, either by FRET [excitation (ex) = 280; emission 

(em) = 440] or by direct MANT excitation (ex = 350; em = 440), using a microplate fluorescence 
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reader (TECAN Spark 20M). Fluorescence was measured every 30 sec starting immediately after 

injection of MANT-GTPgS. Raw fluorescence was plotted over time and observed rates (kobs) 

were determined by fitting a one-phase association curve to the data (GraphPad Prism 7). 

12. Differential scanning fluorimetry (Thermal shift assays) 

6xHis-Gαi3 WT and mutants (5 μM) were taken in their native state (as purified) or 

loaded with GDP by incubating it for 150 min at 30 °C in buffer (20 mM HEPES, pH 8, 100 mM 

NaCl, 1 mM EDTA, 10 mM MgCl2, and 1 mM DTT) supplemented with GDP (1 mM). After 

loading, 45 μL of 5 μM His-Gαi3 was pipetted into PCR tubes (in triplicates) and 5 μL 200X 

SYPRO Orange solution freshly made in the same buffer from 5000X stock (Life Technologies 

S-6650) was added to the protein. A buffer + dye only (no protein) control was also included. 

Thermal shift assays were run on an Applied Biosystems StepOnePlus Real-Time PCR machine. 

Mixed protein and dye samples were subjected to increasing temperatures from 25 to 95 °C in 

half degree increments, holding each temperature for 30 sec and measuring SYPRO fluorescence 

(using filter 3 for TAMRATM and NEDTM dyes) at each temperature. Melting temperatures were 

defined as the temperature at which the maximum value for the derivative of signal fluorescence 

(dF/dt) is achieved (GraphPad Prism 7). 

13. Statistical analysis 

Each experiment presented in the figures is representative of at least three independent 

repeats (with at least two technical repeats for each condition within each repeat). Statistical 

significance between the differences of means was calculated using multiple comparisons in one-

way nonparametric ANOVA. All statistics and graphical data presented were prepared using 

GraphPad Prism. Histograms of MD simulation data were generated in R. 
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C.  Results 

1. GIV-GEM binds and stabilizes Switch-II of Gαi  

To understand structurally the mechanism of GEM-dependent heterotrimeric G protein 

activation, the 31-amino acid (aa) GEM motif of GIV/Girdin (aa 1671-

KTGSPGSEVVTLQQFLEESNKLTSVQIKSSS-1701) was co-crystallized with GDP-bound rat 

Gαi3 (henceforth Gαi•GDP) (Table 3.1). In the crystallization construct, the flexible 25-aa long 

N-terminal helix of Gαi was deleted as done previously (13), and replaced by a His-tag followed 

by a short linker (SSGLVPRGSHM). The structure was solved to 2.1 Å resolution (Fig. 3.1A-B).  

The structure demonstrated that GIV-GEM binds at the typical effector binding interface: 

the hydrophobic pocket between Sw-II and the α3-helix of Gαi. By forming a short anti-parallel 

β-sheet with Sw-II residues 204-208, the peptide stabilizes Sw-II in a previously unseen elevated 

conformation. Key polar contacts at the interface include hydrogen-bonding of GIV E1678 and 

E1688 to Gαi R208, around which the peptide folds in a loop-helix conformation, and a 

hydrogen bond from GIV Q1683 with Gαi Q204, a residue known for its role in GTP-hydrolysis 

(25). The interface also features hydrophobic packing of GIV’s F1685 against W211, I212, 

F215, and W258 of Gαi. Residues L1682-N1690 of GIV form an α-helix that packs favorably 

across the α3-helix of Gαi (Fig. 3.1B-C). Many, but not all, Gαi residues engaged by GIV-GEM 

are shared by Gβγ and GoLoco GDIs (Fig. 3.1C-F, Fig. 3.2A), explaining the ability of GIV to 

dissociate Gαi from both (11, 26). 

The basis for the previously described phosphoregulation of GEM activity of GIV (27, 

28) is evident from the structure and molecular modeling. A phosphate on the N-terminal S1674 

of GIV-GEM is predicted to improve binding by creating an additional polar contact with Gαi 

R208 (Fig. 3.2A-B). By contrast, a phosphate on the C-terminal S1689 of GIV-GEM would 
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disrupt a key hydrogen bond that this residue forms with W258 of Gαi (Fig. 3.2C). These 

findings explain the opposing roles of the two phosphoevents: the former enhances and the latter 

abrogates the ability of GIV to bind and activate Gαi (27, 28).  
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Figure 3.1. GIV-GEM binds Sw-II of Gαi. (A) Topology of Gαi with conformational 

switches and key binding sites marked. (B) Crystal structure of Gαi with GIV-GEM bound 

at Sw-II. (C) A close-up view of the interface between Gαi and GIV-GEM. (D-E) Close-up 

views of Gαi Sw-II bound to Gβγ [(D) PDB 1GP2] or GoLoco-motif GDI RGS14 [(E) PDB 

1KJY]. Key Sw-II residues shared by GIV and Gβγ or RGS14 are shown as spheres 

(aromatic/aliphatic) or sticks (polar). (F) Bubble plot displaying the strength and the nature 

of contacts that Gαi Sw-II residues make with GIV-GEM, Gβγ or RGS14. Dot size is 

proportional to contact strength. (G) Western blot of GST pull-down assay of WT and 

mutant GST-tagged Gαi with GIV and Gβγ from HeLa lysate. 
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Figure 3.2. Structural basis for phosphoregulation of GIV 

binding and activity towards Gαi. (A) Structure of WT GIV-GEM, 

highlighting unphosphorylated S1674 and the various contacts of 

R208 of Gαi. (B) Model of (pS1674)GIV-GEM highlighting the 

formation of an additional direct contact with R208. (C) Structure of 

WT GIV-GEM, highlighting a polar contact that unphosphorylated 

S1689 makes with W258 of Gαi. 

 

Figure 3.3. Homology models of Gαi•GDP bound to members of the GEM family 

suggest a conserved mechanism of binding and action. (A) Sequence alignment of the 

GEM motifs within human GIV, Daple, and NUCB1 (Calnuc) sequences. (B) Table 

summarizing previous mutagenesis studies. (C) Crystal structure of GIV-GEM bound to 

Gαi. (D-E), Homology models of (E) Daple and (E) NUCB1 bound to Gαi created using 

the GIV-GEM-bound structure as template. Hydrogen bonds explaining the mutagenesis 

in B are highlighted. (F) Overlay of our GIV-GEM-bound Gαi structure with the EF-hand 

motif of NUCB1, previously determined by NMR (PDB 1SNL). 
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Homology modeling of other GEM family members, Daple and NUCB1, suggested a 

conserved mode of binding with a few subtle differences that corroborate prior mutagenesis 

findings (Fig. 3.3A-E) (26, 29, 30). Interestingly, the GEM motif of NUCB1 maps onto one of 

the EF-hand motifs of this protein (31); modeling suggests not only full compatibility of the EF-

hand topology with Gαi Sw-II binding, but also structural mimicry between such binding and the 

canonical EF-hand-mediated molecular fold (Fig. 3.3F). 

In our structure, the N-terminal linker of each Gαi molecule binds to its symmetry 

neighbor, positioning the linker Arg and surrounding residues across the nucleotide cleft in a 

manner similar to GoLoco GDIs (Fig. 3.4A-C) (32). Because this interaction was predicted to 

stabilize the bound GDP, we henceforth refer to the N-terminal linker as the nucleotide-

stabilizing linker (NSL). Removal of the NSL (M. Garcia-Marcos, personal correspondence) or 

changing its position (this work) produced no crystals, suggesting that the linker trapped an 

otherwise transient and likely non-crystallizable GEF-induced conformation of Gαi•GDP. To 

determine whether the NSL has confounded structural observations at the GIV-GEM interface 

with Gαi, we solved the structure of the NSL-containing Gαi•GDP with KB752 (Fig. 3.4D-E) 

and compared it to a previously published complex without the NSL (13). No discernible 

differences were noted in the Gαi-KB752 interface (Fig. 3.4F), suggesting that the observed 

features at the Gαi-GIV-GEM interface are also representative of the native interactions. 
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2. GIV-GEM binding disfavors the high-GDP affinity conformations of Gαi 

SwII and Q204 

Upon binding, GIV-GEM accelerates the basal nucleotide exchange of monomeric Gαi 

(11). To understand the structural basis for this phenomenon, we compared the newly solved 

structure with all previously crystallized GDP-bound complexes of Gαi. The complexes were 

organized in order of decreasing GDP affinity, from GoLoco GDI-bound and Gβγ-bound (high 

GDP affinity), through GDP-only (basal affinity) to KB752- and GIV-bound (low GDP affinity). 

Figure 3.4: Structures of KB752-bound and GIV-GEM-bound Gαi•GDP. (A) 

Overlay of our solved KB752-bound and GIV-GEM-bound Gαi•GDP structures. 

Boxed regions are highlighted in B-E. (B) Fo-Fc electron density map around the 

HTL in the Gαi•GDP structure with GIV-GEM is contoured at 3. (C) Overlay of the 

HTL with the GoLoco motif of GDI RGS14 (PDB 1KJY). (D-E) Fo-Fc electron 

density maps around the GIV-GEM peptide (D) or KB752 (E) are contoured at 3. 

(F) Bubble plot of the contacts between Sw-II residues of Gαi and the GIV peptide or 

the KB752 peptide, as seen in the previously published KB752-bound structure 

without the HTL and our solved structures with the HTL. The size of the dot is 

directly proportional to the strength of the contact (2, 3). 
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A clear trend emerged in the position of Sw-I and the molecular contacts of Q204 in Sw-

II. In high-GDP-affinity states, Q204 appears to stabilize Sw-I in an outward position, away from 

the nucleotide-binding pocket (Fig. 3.5A-B). By contrast, in the KB752-bound Gαi structure, 

Q204 is displaced away from Sw-I allowing the latter to “collapse” towards the bound nucleotide 

(Fig. 3.5D). GIV-GEM produces a similar but more exacerbated effect: it stabilizes an elevated 

conformation of Sw-II, hydrogen-bonds to Gαi Q204 via Q1683 and pulls it ~11 Å away from 

Sw-I, leading to an even greater contraction of the GDP binding site that also involves a 

displacement of the β2-strand (Fig. 3.5E-F). Despite this collapse, the N-terminal part of Sw-I is 

found in the outward position, likely due to the presence of the NSL (Fig. 3.5E).  

These observations prompted us to probe the role of Gαi Q204 in GIV-GEM-mediated 

GDP-release. A Q204A mutant was generated and tested in a kinetic assay where GDP released 

from Gαi is replaced by MANT-GTPγS, a non-hydrolyzable fluorescent GTP analogue (33, 34). 

Because GDP release is the rate-limiting step of nucleotide exchange, increases in MANT-

GTPγS incorporation rate by Gαi reflect the acceleration of GDP release (35). Compared to WT, 

Gαi-Q204A displayed a small but consistent increase in the basal nucleotide exchange rate (1.28-

fold; Fig. 3.5G-H); however, it was significantly more sensitive to activation by GIV-GEM 

(3.25-fold compared to 1.84-fold for WT Gαi; Fig. 3.5G-H). These findings suggest that Q204 

indeed negatively regulates nucleotide exchange, likely by stabilizing Sw-I in the high-GDP-

affinity state. Interestingly, the direct contact between GIV Q1683 and Gαi Q204 appears 

unnecessary for accelerated nucleotide exchange because a GIV-Q1683A mutant fully retained 

its GEF function. 
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Figure 3.5. GIV binding to Sw-II of Gαi disrupts GDP-stabilizing 

interactions between Sw-II and Sw-I and induces a low-GDP-affinity 

conformation of Gαi. (A-E) Comparison of Sw-I, Sw-II, and Q204 in GDP-

bound structures, arranged from high (left) to low (right) GDP-affinity. (F) 

Overlay of structures shown in (A-E), highlighting differences in Sw-I and the 

β2-strand. (G) MANT-GTPγS incorporation into WT and Q204A Gαi proteins 

was assessed in the presence of varying concentrations of WT GIV-GEM 

peptide. Findings are displayed as a line graph showing observed rates (kobs, s
-1) 

for nucleotide incorporation. Data shown is triplicates from a representative 

experiment; n = 3. (H) Same data as in (G) presented as a line graph showing 

average nucleotide incorporation over time in the presence or absence of 50 μM 

WT GIV-GEM peptide. Statistical significance between means was calculated 

using multiple comparisons in one-way nonparametric ANOVA. 
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3. Binding of GIV-GEM to Gαi overcomes the allosteric GDP-stabilizing  

role of hydrophobic residues in SwII 

Besides Q204, GIV-GEM also directly engages the aromatic residues W211 and F215 in 

Sw-II of Gαi; these residues were previously proven critical for GIV-GEM binding (11). We 

hypothesized that the packing of these bulky hydrophobic residues against the β-barrel of the 

GTPase domain may stabilize GDP in the basal state (Fig. 3.6A). If so, binding of GIV-GEM to 

Sw-II may neutralize such GDP-stabilizing effects to stimulate GDP release. Alanine 

substitutions, W211A or F215A, resulted in substantial increases in the basal nucleotide 

exchange rate of Gαi in MANT-GTPγS incorporation assays (2.48- and 1.84-fold increases, 

respectively; Fig. 3.6B-C). Mutation of a hydrophobic residue on Sw-II that is not necessary for 

GIV-GEM binding, V218A, showed a small decrease in nucleotide exchange rate (Fig. 3.6B-C). 

Consistent results were obtained in thermal stability assays where the two fast-exchanging Gαi 

mutants, W211A and F215A, displayed lower melting temperatures in both native and GDP-

bound state compared to WT and V218A Gαi (Fig. 3.7). These results suggest that W211 and 

F215 on Sw-II contribute to stabilization of the bound GDP, an effect that is neutralized by GIV-

GEM binding. 

To understand the global allosteric changes in Gαi caused by the loss of bulky 

hydrophobics in Sw-II, we subjected WT and mutant Gαi to hydrogen-deuterium exchange mass 

spectrometry (HDX-MS): a sensitive technique that uses deuterium labeling of protein backbone 

amides (36) to probe conformational dynamics and mutation-induced allostery (37, 38). The 

V218A mutant showed no measurable difference in deuterium uptake compared to WT Gαi (Fig. 

3.6D). By contrast, the fast-exchanging W211A mutant exhibited regions of higher deuterium 

uptake indicative of increased dynamics. The fragment spanning Sw-I and the β2-strand 

file:///C:/Users/Noah/Desktop/grad/diss/ch3gai.docx%23_ENREF_11
file:///C:/Users/Noah/Desktop/grad/diss/ch3gai.docx%23_ENREF_36
file:///C:/Users/Noah/Desktop/grad/diss/ch3gai.docx%23_ENREF_37
file:///C:/Users/Noah/Desktop/grad/diss/ch3gai.docx%23_ENREF_38


56 

 

(residues 176-191) showed the highest increase in deuterium uptake in the W211A mutant 

compared to the WT protein (7.20% increase; Fig. 3.6E). Other regions with increased deuterium 

uptake in the mutant include the C-terminal end of the α4-helix through the β6-strand (residues 

311-323 and 308-323, 5.23% increase) and the αD-αE (NDS) loop (residues 140-154, 4.24% 

increase) (Fig. 3.6E). Although it is impossible to state whether these changes are a trigger or a 

consequence of GDP release, the findings are consistent with the role of W211 on Sw-II as an 

allosteric stabilizer of Sw-I and the β2-strand of Gαi, and thus, of the overall high-GDP-affinity 

state of the protein. 
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Figure 3.6. Hydrophobic residues in Sw-II of Gαi engaged by GIV stabilize 

GDP and influence the dynamics of Sw-I and the β2-strand. (A) Structure 

showing hydrophobic residues in Sw-II of Gαi that were subjected to 

mutagenesis. (B-C) MANT-GTPγS incorporation into WT, W211A, F215A, and 

V218A Gαi. Findings are displayed as a dot plot (B) showing the observed 

nucleotide incorporation rates (kobs, s
-1) and as line graphs (C) showing average 

nucleotide incorporation over time. Data shown is from three independent 

experiments; n = 9, 7, 8 and 7 for WT, W211A, F215A, and V218A, respectively. 

(D-E), Differences in relative deuterium uptake between V218A and WT Gαi (D) 

and between W211A and WT Gαi (E) at 5 min, as determined by triplicate HDX-

MS assays. Blue and red coloring corresponds to -10% and +10% change, 

respectively, black indicates regions that were not mapped. Regions exhibiting 

increased uptake in the W211A mutant are highlighted and the corresponding 

deuterium uptake plots shown (standard deviation error bars are within the 

symbols). Statistical significance between means was calculated using multiple 

comparisons in one-way nonparametric ANOVA. 
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Figure 3.7. Trypsin proteolysis and thermal shift assays support the 

GDP-stabilizing role of Sw-II residues W211 and F215. (A) Coomassie 

stain of a trypsin proteolysis assay performed on WT and Sw-II mutant Gαi 

proteins loaded with GDP or GTPγS. (B) WT and Sw-II mutant Gαi proteins 

were subjected to increasing temperatures in differential scanning fluorimetry 

(thermal shift) assay. Findings are displayed as a line graph (left) showing 

average normalized dF/dt curves of Native (no excess GDP added) or as dot 

plot (right) showing the melting temperatures of Native WT and Sw-II mutant 

Gαi proteins. Peaks of the curves (left) represent protein melting temperatures. 

Data shown are triplicates from a representative experiment; n = 3. (C) Same 

as in (B) except 1 mM GDP was added. 
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D. Discussion 

Overall, this work provides the first atomic level structure of a naturally occurring GEM 

bound to Gαi. The structure provides mechanistic insights into key aspects of GEM biology, 

including the ability of GEMs to dissociate Gαi complexes with Gβγ (thereby initiating Gβγ 

signaling) and GoLoco-containing proteins (thereby antagonizing the GDI action of such 

proteins)  (11, 20). The structure also explains the basis for phosphoregulation of GIV-GEM.  

Furthermore, this study elucidates the mechanism by which GEMs accelerate GDP 

release from Gαi. HDX-MS and nucleotide exchange experiments reveal a previously unknown 

role of Gαi Sw-II in nucleotide affinity. Stabilization of the elevated Sw-II conformation by 

GIV-GEM releases conformational constraints on Sw-I and β2-β3 strands of Gαi, allowing for 

inward collapse of the former and higher mobility of the latter. This perturbation propagates to 

the hydrophobic core in the center of the GTPase domain that was previously shown to 

contribute to both basal and GPCR-accelerated nucleotide exchange in Gαi (39, 40). 

Furthermore, structures of GPCR-bound G proteins demonstrate that GPCRs directly disrupt this 

core by inserting into it a hydrophobic residue from the intracellular loop 2 (5-8). Thus, our 

findings suggest that despite binding at non-overlapping interfaces on Gαi, GEMs and GPCRs 

share a part of their allosteric mechanism for acceleration of GDP release by both disrupting the 

hydrophobic core of the GTPase domain of Gαi (Fig. 3.6). These similarities escaped detection 

in earlier studies employing molecular modeling (11) and NMR (41). 

Because nucleotide exchange is an inherently dynamic process, our serendipitously 

identified NSL has likely facilitated the crystallization of an otherwise unstable and transient 

complex, much like the intentionally introduced conformation-specific nanobodies in other GEF-

bound structures of G proteins (5). While the insights from the structure alone may be limited by 
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its static nature and possibly the presence of the NSL, the complementary computational, 

biophysical, and biochemical experiments provide a holistic understanding of the diverse 

mechanisms for allosteric regulation of Gαi. 

 

Chapter III, in part, is a reprint that the dissertation author significantly contributed to as 

both a researcher and an author. The material appears in the Proceedings of the National 

Academy of Sciences in the United States of America. (Kalogriopoulos, N., Rees, S.D., Ngo, T., 

Kopcho, N.J., Ilatovskiy, A.V., Sun, N., Komives, E.A, Chang, G., Ghosh, P., Kufareva, I. 

(2019) “Structural basis for GPCR-independent activation of heterotrimeric Gi proteins” PNAS. 

116: 16394-16403.)  
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A.  Introduction 

 ATP Binding Cassette (ABC) transporters comprise one of the largest families of 

membrane proteins. These proteins utilize ATP hydrolysis to drive substrate transport across a 

cell membrane. The first identified mammalian ABC transporter, P-glycoprotein, transports a 

diverse pool of substrate molecules unidirectionally out of cells (1), extruding metabolites and 

preventing the entry of toxic molecules. P-gp has also been directly linked to numerous disease 

pathologies, such as tumor multidrug resistance (2) and the progression of cerebral amyloidosis 

(3). 

Structurally, P-gp is well established and consists of two homologous segments 

connected by a flexible linker on a single polypeptide chain (Fig. 4.1A). Each half of the 

molecule contains six transmembrane helices and one cytosolic nucleotide binding domain 

(NBD). Like many other ABC transporters, P-gp is believed to alternate between two distinct 

conformational states during the transport cycle: an inward-facing conformation capable of 

binding intracellular transport substrates, and an outward-facing conformation oriented to eject 

substrates across the membrane (4). The first crystal structure of P-gp was observed in the 

inward-facing conformation, with the two NBDs separated from one another and a large 

substrate binding pocket exposed to the cytosol and inner membrane leaflet (5). Numerous 

structures of inward-facing P-gp have been determined since then (6-8). 

During transport, P-gp binds to two ATP molecules and the NBDs dimerize in a head-to-

tail arrangement, occluding the binding pocket from the intracellular environment. Dimerization 

is accompanied by ATP hydrolysis at the NBDs and the outward movement of extracellular (EC) 

helices on the opposite end of the transporter, resulting in a post-transport outward-facing 

conformation (Fig. 4.1B). These rearrangements open the binding pocket to the EC environment  
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Figure 4.1. Domain architecture of inward and outward-facing P-gp. (A) 

Domain organization of P-gp. HDX-MS data have been mapped on the inward-

facing crystal structure of P-gp (8). The model is colored on a rainbow scale from 

lowest (blue) to highest (red) by relative deuterium uptake of apo P-gp after 5 mins 

of exchange. Solvent occlusion by the detergent micelle is indicated by low 

exchange along the transmembrane domain. (B) Diagram of the conformational 

transition between inward and outward-facing states. A homology model based on 

outward-facing MsbA was used to represent outward-facing P-gp (11). Structures 

are colored by difference in relative uptake between inward and outward-facing P-

gp after 5 mins of exchange. Regions with decreased exchange in the outward-

facing state appear blue, while regions with greater exchange are colored red. 
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and result in a conformation with reduced substrate affinity, enabling substrate 

translocation across the plasma membrane (9). The outward-facing conformation has been 

observed crystallographically in the homologous bacterial ABC transporters Sav1866 (10) and 

MsbA (11). Conformational changes associated with NBD dimerization in P-gp have been 

validated in vitro using cysteine cross-linking (12) and fluorescence resonance energy transfer 

(FRET) (13) experiments. Electron paramagnetic resonance (14) measurements with MsbA and 

double electron-electron resonance (15) experiments have demonstrated increased dynamics 

throughout the P-gp EC domain in the outward-facing conformation. 

An intermediate conformation between the inward and outward-facing states has also 

been observed in some transporters. Often referred to as the occluded conformation, this state 

represents the point at which NBDs have dimerized yet the EC domain opening has not yet 

occurred (16). The existence of this conformation has been supported by experimental evidence 

utilizing FRET, cysteine cross-linking and cysteine accessibility to demonstrate a conformation 

in which NBDs were dimerized while the EC domain remained closed in MsbA (17). The 

occluded conformation was later observed via crystal structures of the bacterial homologs McjD 

(18) and PglK (19), and in a cryo-EM structure of MsbA (20). 

The transport cycle of P-gp has typically been studied through the use of site-directed 

mutagenesis and specific ligands which arrest the molecule in various intermediate 

conformations. The pre-hydrolytic ATP bound state has been stabilized through the addition of 

non-hydrolyzable ATP analogues (21) and mutations which inhibit ATPase activity (22). The 

mutation of key catalytic residues within the NBDs (E552Q/E1197Q) was found to stabilize the 

ATP-bound pre-hydrolytic state by dramatically slowing P-gp catalyzed ATP hydrolysis (23), 

and these combined mutations were recently used to generate a cryo-EM structure of P-gp bound 
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to ATP (24). When P-gp carries out ATP hydrolysis in the presence of the orthovanadate ion 

(VO4
−3), the P-gp molecule becomes trapped in the outward-facing Mg+2-ADP-VO4

−3-bound 

post-hydrolytic state (25). Orthovanadate trapping stabilizes the hydrolytic transition state by 

mimicking the γ-phosphate of ATP, and has been used previously to form stable transition state 

complexes with ATPase enzymes (26). 

We have utilized hydrogen-deuterium exchange mass spectrometry (HDX-MS) to 

interrogate the dynamics of P-gp in three distinct states: apo P-gp (inward-facing), Mg+2-ATP 

bound to (E552Q/E1197Q) P-gp (pre-hydrolytic), and P-gp bound to Mg+2-ADP-VO4
−3 (post-

hydrolytic, outward-facing). 

B. Materials and Methods 

1. P-gp expression and purification 

Codon-optimized murine P-gp (Genbank: JF834158) was expressed in Pichia pastoris 

and purified as previously described . Size-exclusion chromatography (Superdex 200 16/60, GE 

Healthcare) was performed with buffer containing 20 mM HEPES pH 7.5, 100 mM NaCl, 

0.035% β-DDM, 0.01% sodium cholate, and 0.2 mM TCEP. Fractions were pooled and stored at 

80 °C for HDX-MS analysis. 

2. HDX-MS analysis of P-gp 

 HDX-MS measurements were made using a Synapt G2Si system (Waters Corporation). 

Deuterium exchange reactions were carried out by a Leap HDX PAL autosampler (Leap 

Technologies, Carrboro, NC). Deuterated buffer was prepared by lyophilizing 10 mL of 20 mM 

HEPES pH 7.5, 100 mM NaCl. Lyophilized buffer was resuspended in 10 mL 99.96% D2O 

immediately before use, to which was added powdered β-DDM to a final concentration of 

0.01%. For measurements of the outward-facing state, the following reagents were added to P-gp 
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samples and D2O buffer at final concentrations: 5 mM MgSO4, 2 mM sodium orthovanadate and 

2 mM ATP. For measurements of the pre-hydrolytic state, 5 mM MgSO4 and 10 mM ATP were 

added to (E552Q/E1197Q) P-gp samples and D2O buffer, as these conditions were found to 

induce a NBD-dimerized conformation in a majority of particles observed by cryo-EM (24). In 

the apo, pre-hydrolytic, and outward-facing states, control solutions were added to protein 

samples and D2O buffer in order to account for buffer dilution and the addition of H2O. 

 Each deuterium exchange time point (0 min, 30 sec, 1 min, 2.5 min, 5 min) was 

measured in triplicate. For each measurement, 4 μL of protein was mixed with 36 μL of D2O 

buffer at 25 °C. Deuterium exchange was quenched by combining 35 μL of the deuterated 

sample with 65 μL of 0.1% formic acid and 3 M guanidinium-HCl for 1 min at 1 °C. The 

quenched sample was then injected in a 50 μL sample loop and digested by an inline pepsin 

column (Pierce, Inc.) at 15 °C. Optimization revealed that ideal sequence coverage was obtained 

by using a flow rate of 400 μL/sec to capture the resulting peptides on a BEH C4 Vanguard 

precolumn. Peptides were then separated by analytical chromatography (Acquity UPLC BEH 

C4, 1.7 uM, 1.0 × 50 mm, Waters Corporation) using 7−85% acetonitrile in 0.1% formic acid 

over 7.5 min, and then analyzed on a Waters Synapt G2Si quadrupole time-of-flight mass 

spectrometer following electrospray injection.  

 Data were collected in Mobility, ESI + mode, mass acquisition range of 200−2000 

(m/z), scan time 0.4 s. Continuous lock mass correction was performed using infusion of leu-

enkephalin (m/z = 556.277) every 30 seconds (mass accuracy of 1 ppm for calibration standard). 

For peptide identification, data were instead collected in MSE (mobility ESI+) mode. Peptide 

masses were identified following triplicate analysis of 10 μM P-gp, and the data were analyzed 

using PLGS 2.5 (Waters Corporation). Peptides masses were identified using a minimum number 
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of 250 ion counts for low energy peptides and 50 ion counts for their fragment ions. The 

following parameters were used to filter peptide sequence matches: minimum products per 

amino acid of 0.2, minimum score of 7, maximum MH+ error of 5 ppm, and a retention time 

RSD of 5%, and the peptides had to be present in two of the three ID runs collected. After 

identification in PLGS, peptides were analyzed in DynamX 3.0 (Waters Corporation). Deuterium 

uptake for each peptide was calculated by comparing the centroids of the mass envelopes of the 

deuterated samples with the undeuterated controls. Back-exchange correction factors were 

applied as previously reported (27). The Y-axis limit for each plot reflects the total number of 

amides within the peptide that could have possibly exchanged. Each plot includes the peptide 

MH+ value, sequence, and sequential residue numbering. 

3. Binding kinetics 

Analysis of binding kinetics were carried out using a ForteBio K2 at 30 °C in P-gp 

storage buffer. Wild-type and (E552Q/E1197Q) P-gp were biotinylated using EZ-Link NHS-

PEG4-Biotin (Thermo Scientific) at a ratio of 1:1. Streptavidin coated biosensors were pre-

hydrated in P-gp storage buffer for 15 min and then transferred to microplate wells containing 

biotinylated P-gp at a concentration of 6 μg/mL for immobilization. Unbound streptavidin 

molecules were blocked by incubation in 10 μg/mL biocytin for 60 sec, and biosensors were then 

washed an additional 60 sec in storage buffer. Baseline biolayer interferometry (BLI) 

measurements were carried out for 90 sec in storage buffer. Association rates were measured by 

transferring the biosensors to wells supplemented with Mg+2 (or Mg+2 and Na3VO4) and 

nucleotide for 60 sec. Dissociation was then measured for 180 sec by transferring the biosensors 

back to the wells used for baseline recording. In the wells used for association measurements, 

concentrations of Mg+2 (or Mg+2 and VO4
−3) and nucleotide were maintained at a 1:1 ratio. 
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Signal due to changing Mg+2 and VO4
−3 concentrations was subtracted by referencing against 

buffer supplemented with only Mg+2 and VO4
−3 without nucleotide. Non-specific binding of ATP 

to the biosensor surface was subtracted by referencing against biosensors with no P-gp 

immobilized. Because high concentrations of nucleotide were necessary to obtain a signal, a 

control experiment was carried out using biotinylated bovine serum albumin to ensure there was 

no non-specific binding of nucleotide to the immobilized protein. Kinetics data were fitted to a 

two binding-site model using ForteBio Data Analysis 11.0 and were plotted with Kaleidagraph. 

4. ATPase assay 

P-gp samples were diluted to give 1 μg per 30 μL in P-gp storage buffer supplemented 

with 5 mM MgSO4 and 0.1 mg/mL e. coli. polar lipids. Verapamil-HCl stock solution was made 

using the same buffer, and P-gp was incubated with verapamil-HCl or buffer for 15 min on ice. 

Protein samples (30 μL) and reaction buffer containing 50 mM ATP (1.6 μL) were then 

transferred to separate wells on a 96-well plate held at 4 °C on a thermocycler. The P-gp samples 

were added to wells containing ATP using a multichannel pipette and the plate was cycled to 30 

°C for 3 min of hydrolysis, then brought to 80 °C for 15 sec to inactivate P-gp and held at 4 °C. 

Inorganic phosphate liberated by hydrolysis was measured by adding 30 μL of the samples to 

150 μL of developing solution prepared by mixing 0.525 g ammonium molybdate in 12.5 mL of 

4 M HCl with 17 mg malachite green in 37.5 mL of deionized H2O and adding 0.1% (v/v) 

Triton-x 100 to activate. Absorbance was measured at 595 nM on a PerkinElmer 2030 plate 

reader after 5 min. 

C. Results 

 We carried out HDX-MS on apo P-gp, which has been shown to predominantly occupy 

the inward-facing conformation (15, 28), pre-hydrolytic (E552Q/E1197Q) P-gp bound to Mg+2-
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ATP (23, 24) and outward-facing P-gp stabilized by complexation with Mg+2-ADP-VO4
−3 (25). 

To verify nucleotide binding affinities of both P-gp constructs, binding of Mg+2-ATP and Mg+2-

AMPPNP were measured using BLI (Fig. 4.2). In each case, the best fit to the data was obtained 

by using a two binding-site model, which revealed one site having low micromolar affinity and 

another in the hundreds of micromolar range, indicating a strong asymmetry in nucleotide 

binding to each NBD (Table 4.1). Affinity of wild-type P-gp for Mg+2-ADP-VO4
−3 also fit to a 

two binding-site model, though it could not be determined whether the VO4
−3 ion was present at 

both sites. The measured affinities in this case were approximately 10-fold tighter than when 

measured in the absence of VO4
−3, also in agreement with previous findings (29). Despite similar 

binding kinetics, the mutant (E552Q/E1197Q) P-gp was verified as showing no verapamil-

stimulated ATPase activity (Fig. 4.3) (23). 

 Our HDX-MS data covered 85.8% of the P-gp sequence in 86 different peptides. 

Deuterium uptake was measured at time intervals up to 5 min of incubation in deuterated buffer 

at 25 °C, as these conditions were recently shown to reveal native state protein dynamics that 

occur in the μs-ms range (30). Fractional deuterium uptake into apo P-gp was mapped onto the 

crystal structure of mouse P-gp (8) providing a measure of dynamics occurring throughout the 

transporter (Fig. 4.1A). In order to contextualize differences in conformational dynamics 

between the inward and outward-facing states, we compared deuterium uptake between apo P-gp 

and outward-facing P-gp. Differences of more than 0.5 Da were interpreted as significant. The 

difference in uptake between the inward-facing, pre-hydrolytic and outward-facing states were 

mapped on models which yielded the best structural fit to our data. 
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Figure 4.2. Nucleotide binding kinetics. Binding kinetics resulting 

from BLI experiments are summarized. Both mutant and wild-type P-gp 

displayed similar affinities for ATP and AMPPNP. Wild-type P-gp 

binding to Mg+2-ATP in the presence of VO4
−3 was approximately 10-

fold tighter. Concentrations are 1.6 (black), 8 (blue), 40 (green), 200 

(orange), 1000 (red) and 5000 (cyan) μM.  
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Table 4.1. Binding kinetics between P-gp and nucleotide molecules. 

 
KD1 

(x10-6
 M) 

KD2 

(x10-6
 M) 

Kon1 

(x103*1/ Ms) 

Kon2 

(x10*1/ Ms) 

Koff1 

(x10-3*1/ s) 

Koff2 

(x10-3*1/ s) 

Full 

R2 

P-gp with 

Mg+2-ATP 
3.2 ± 0.3 210 ± 20 3.0 ± 0.2 6.5 ± 0.7 9.4 ± 0.3 13.5 ± 0.8 0.92 

(E552Q/E1197) 

P-gp with 

Mg+2-ATP 

2.2 ± 0.2 220 ± 20 4.7 ± 0.3 4.4 ± 0.4 10.3 ± 0.3 9.7 ± 0.6 0.91 

P-gp with 

Mg+2-AMPPNP 
2.5 ± 0.1 550 ± 20 3.4 ± 0.1 1.7 ± 0.4 8.6 ± 0.2 9.5 ± 1.6 0.90 

(E552Q/E1197) 

P-gp with 

Mg+2-ATP 

2.9 ± 0.3 190 ± 40 2.7 ± 0.2 5.9 ± 1.1 7.6 ± 0.3 11.2 ± 1.3 0.91 

P-gp with 

Mg+2-ADP-VO4
-3 

0.9 ± 0.1 70 ± 3 5.8 ± 0.4 7.3 ± 0.2 5.5 ± 0.2 5.2 ± 0.2 0.95 

 

Figure 4.3. Verapamil-stimulated ATPase assay. ATPase activity 

of wild-type P-gp was enhanced by the substrate transport verapamil, 

while (E552Q/E1197Q) P-gp was insensitive to verapamil. 
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1. Transmembrane domain 

The linker connecting both halves of P-gp has not been observed in three-dimensional 

structures. Contrary to the fast exchange expected for an unstructured region, deuterium uptake 

into the linker sequence (covered by peptides corresponding to residues 619–630, 631–658 and 

659–684) was not complete even after 5 min of exchange. These results suggest that the linker 

may either possess some degree of secondary structure, as hypothesized previously (31), or that 

it contacts other surfaces of the transporter. The linker showed no measurable differences 

between the three experimental states of P-gp. 

In all three experimental states, a band of non-exchanging amides was observed around 

the transmembrane helices (TMHs) which most likely marks the region of the TMHs covered by 

the detergent micelle (Fig. 4.1A). The only TM regions which showed little deuterium 

incorporation outside of the detergent band were found in TM2 (residues 132–152) and TM8 

(residues 767–780 and 790–799), which run along the outer sides of the transporter (Fig. 4.4). 
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One peptide from TM4 (residues 216–223) incorporated deuterium despite being located 

along the non-exchanging band (Fig. 4.5). This dynamic segment of TM4 had lower exchange in 

the (E552Q/E1197Q) mutant than in wild-type P-gp, and both the pre-hydrolytic and outward-

facing states showed lower exchange compared to the apo states. On the opposite side of the 

transporter, TM10 (residues 858–865) is in an analogous position but exhibited the same 

complete protection observed for the rest of the non-exchanging band. Regions of TMHs which 

comprise the substrate-binding cavity (residues 56–68, 168–188, 216–223, 280–299, 340–350, 

811–829, 916–937, and 991–1016) showed increasing deuterium incorporation over time, 

indicative of slow dynamic processes. Portions of TMHs on the intracellular side of the 

transporter showed decreased exchange in both the pre-hydrolytic and outward-facing states, 

consistent with TMH bundling that accompanies NBD dimerization (Fig. 4.6). 

Figure 4.4. Non-exchanging transmembrane helices. Deuterium 

uptake plots for regions of TM2 and TM8. These helices are centered 

along the sides of the transporter, and are the only TMHs which 

displayed low uptake outside the detergent band. 
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Figure 4.5. Slowly exchanging substrate binding 

pocket. Deuterium uptake plots for the TMHs 

comprising the polyspecific binding pocket. All regions 

display increasing uptake over time, indicative of  

ongoing dynamic processes throughout this region.  

TM4 (residues 216–223) is the only region within the 

detergent band that exchanged with deuterium. 
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Figure 4.6. Decreased exchange throughout the transmembrane domain. 

Inner TM helices which group together following NBD dimerization all 

decreased exchange in both pre-hydrolytic (A) and outward-facing (B) states. 
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2. Nucleotide binding domains 

 Within the NBDs, all conserved ATP binding motifs became more protected from 

exchange in both the pre-hydrolytic and outward-facing states (Fig. 4.7). Although previous 

HDX-MS studies of P-gp showed some evidence of EX1 kinetics within the NBDs, the 

phenomenon was mainly present in nanodisc-embedded P-gp and hardly observable in detergent-

solublized preparations (32). Our results are consistent with this previous work.  

 

  

  

Figure 4.7. Decreased exchange in both nucleotide binding domains. 

Conserved ABC transporter motifs and regions which contact nucleotide from 

both NBDs decreased exchange in the pre-hydrolytic and outward-facing states. 
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 Each NBD contacts one pair of intracellular helices (ICHs). In the pre-hydrolytic state, 

all surfaces contacting ICHs in NBD1 (residues 363–374, 436–446, 465–475, and 480–493) and 

NBD2 (residues 1004–1016, 1079–1091, 1092–1105, 1123–1138) had decreased exchange (Fig. 

4.8A). In the outward-facing state, all NBD1 regions contacting ICHs showed decreased 

exchange, while only the peptide corresponding to residues 1123–1138 decreased exchange by 

more than 0.5 Da in NBD2 (Fig. 4.8B). 

 

 

 

  

Figure 4.8. Decreases in exchange among nucleotide binding domain regions 

contacting intracellular helices. (A) All regions contacting ICHs from both NBDs 

decreased exchange in the pre-gydrolytic state. (B) In the outward-facing state, every 

region contacting ICHs on NBD1 decreased exchange by more than 0.5 Da. Only the 

peptide containing residues 1123–1138 showed decreased exchange in NBD2. 
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Among the ICHs, one ICH contacting NBD1 (IC4: residues 900–915) and one ICH 

contacting NBD2 (IC2: residues 257–279) showed reduced exchange in the pre-hydrolytic state 

(Fig. 4.9A). In the outward-facing state, both ICHs contacting NBD1 (IC1: residues 153–159, 

Figure 4.9. Decreases in exchange among intracellular helices. (A) In the pre-

hydrolytic state, ICH4 contacting NBD1 and ICH2 contacting NBD2 showed 

decreased exchange. (B) In the outward-facing state, both ICHs contacting NBD1 

showed reduced exchange, while the ICHs at the NBD2 interface did not. 
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and IC4) showed reduced exchange whereas deuterium incorporation into the ICH pair that 

interfaces with NBD2 (IC2, and IC3: residues 790–799), was unchanged (Fig. 4.9B). 

3. Extracellular domain 

The EC domain is comprised of six loops between TMH pairs, and it showed 

dramatically different changes in the pre-hydrolytic and outward-facing conformations. In the 

pre-hydrolytic state, EC1 (residues 79–100), EC5 (residues 848–855), and EC6 (residues 959–

966) showed reduced uptake (Fig. 4.10A) While in the outward-facing state, EC2 (residues 201–

212), EC3 (residues 316–328), EC4 (residues 729–850) and EC6 incorporated deuterium more 

rapidly (Fig. 4.10B). 
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  Figure 4.10. Perturbations to exchange throughout the extracellular domain. 

Deuterium uptake plots reveal the dynamics of the EC domain. (A) A cryo-EM 

structure of (E552Q/E1197Q) P-gp obtained under similar experimental 

conditions provided the best fit to our HDX-MS data (24). Decreased exchange 

was evident among ECL1, 5 and 6 in the pre-hydrolytic state. (B) In outward-

facing P-gp, increased exchange was found among ECL 2, 3, 4 and 6. 
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D. Discussion 

The high sequence coverage we obtained provided a comprehensive picture of P-gp 

dynamics in the apo, pre-hydrolytic and outward-facing states. A substantial reduction in 

deuterium exchange was observed within the NBDs in the pre-hydrolytic and outward-facing 

states compared to the inward-facing apo state, implying that the two binding sites were 

occupied by nucleotide in both states (Fig. 4.7). These results agree with previous findings that 

two molecules of ATP were observed bound to P-gp in a cryo-EM structure (24). In addition, our 

BLI measurements revealed two binding affinities as did previous studies of Chinese hamster P-

gp binding to the non-hydrolyzable ATP analogue ATP-γ-S, which revealed that when one NBD 

occludes nucleotide with relatively tight affinity (KD: 4 μM), the other NBD also remains 

associated with nucleotide, albeit more weakly (KD: 740 μM) (Fig 4.2, Table 4.1) (33). 

Consistent with expectations, a region of low exchange due to solvent exclusion by the 

detergent micelle was represented by a band of complete protection found along the TMHs (Fig. 

4.1A). This region corresponds to the location of the membrane as determined computationally 

and by atomic force microscopy of P-gp reconstituted in a phospholipid bilayer (34). Cryo-EM 

structures generated using P-gp solubilized with the same detergent employed here also showed 

the presence of a detergent corona around this region (28, 35). 

Two helices (TM2 and TM8), located on opposite sides of the transporter and 

sandwiched between surrounding TMHs, were the only regions that were protected from 

exchange outside of the detergent band (Fig. 4.4). The most likely reason for their low exchange 

is tight packing with neighboring TMHs, which may restrain dynamic motions necessary for 

deuterium exchange to occur. These TMHs also did not show any difference in uptake between 
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the three experimental states, suggesting that the dynamics of TM2 and TM8 remain unchanged 

as P-gp alternates between inward and outward-facing conformations. 

Surprisingly, one segment of TM4 (residues 216–223), despite being located along the 

detergent band, showed relatively high deuterium exchange (Fig. 4.5). In addition, the 

(E552Q/E1197Q) mutations in the NBDs were sufficient to reduce deuterium incorporation into 

this segment, which is over 80 Å away. Exchange within this region was also reduced in the pre-

hydrolytic and outward-facing states. These results suggest that this portion of TM4 responds to 

changes in the NBDs and plays a key role in conformational transitions. Furthermore, it appears 

that the ATPase inhibitory (E552Q/E1197Q) mutation induces long-distance stabilizing effects 

even in the absence of ligands. Conformational heterogeneity has previously been noted within 

this region, where a study of P-gp crystal structures bound to various ligands noted different 

conformations of this region with the finding that ATPase-stimulating ligands induced a 

structural change in TM4 between residues 219–243, while binding of ATPase inhibitors 

resulted in a more rigid structural reorganization (7). 

The polyspecific substrate binding pocket located within the TM domain showed 

increasing exchange over time (Fig. 4.5), indicating mobility throughout the TMHs that comprise 

this pocket. These exchange profiles resulted from amides that were gradually exposed as the 

transporter sampled a range of conformations over a range of time scales. It is likely that these 

dynamics contribute to the substrate promiscuity that is a hallmark characteristic of P-gp (36). 

These results confirm predictions that the polyspecific binding pocket is highly dynamic, 

underscoring the mobility of the P-gp molecular machine. 

Two ICHs nestle into hydrophobic clefts in each NBD, forming highly conserved 

interfaces that have been shown to be crucial for P-gp ATPase activity (37, 38). Unlike the 

file:///C:/Users/Noah/Desktop/grad/diss/ch4pgp.docx%23_ENREF_7
file:///C:/Users/Noah/Desktop/grad/diss/ch4pgp.docx%23_ENREF_36
file:///C:/Users/Noah/Desktop/grad/diss/ch4pgp.docx%23_ENREF_37
file:///C:/Users/Noah/Desktop/grad/diss/ch4pgp.docx%23_ENREF_38


86 

 

similar reductions in exchange observed at the nucleotide binding sites, the two ICH-NBD 

interfaces displayed asymmetric changes in dynamics. In the pre-hydrolytic state, all NBD 

regions contacting ICHs decreased exchange (Fig.4.8A). In the outward-facing state, every 

region in NBD1 contacting ICHs decreased exchange while only one portion of NBD2 

contacting ICHs decreased exchange (Fig. 4.8B). At the opposite side of this interface, one ICH 

contacting each NBD showed lower deuterium exchange in the pre-hydrolytic state (Fig. 4.9A). 

All ICH regions that contact NBD1 showed reduced exchange in the outward-facing state, while 

none of the ICHs contacting NBD2 decreased exchange (Fig. 4.9B). Similar results 

demonstrating reduced uptake at the ICH-NBD1 interface in the outward-facing conformation 

and no change at the ICH-NBD2 site were obtained in another HDX-MS study of P-gp (32), 

although coverage of this region was incomplete in the previous work. These results suggest 

coordinated conformational motions that occur sequentially to move P-gp through a range of 

conformations. 

The EC domain, composed of six loops between TMHs, underwent remarkably different 

changes in dynamics in the pre-hydrolytic and outward-facing states. We observed that three of 

the ECLs along the face of the molecule defined by TM10 decreased exchange in the pre-

hydrolytic state (Fig. 4.10A). In contrast, in the outward-facing conformation, three of the ECLs 

along the side defined by TM4 and one ECL on the TM10 side had increased exchange (Fig. 

4.10B). It is interesting to note that the decrease in exchange in the TMHs following NBD 

dimerization is similar to the decrease in exchange in the EC domain in the pre-hydrolytic state 

strongly suggesting the entire molecule is occluded in the pre-hydrolytic state (Fig. 4.6). In 

contrast, our results clearly show that the outward-facing state has increased ECL dynamics. EC 

domain opening has been observed structurally (10, 11) and EC domain flexibility was suggested 
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by the observed heterogeneity of the EC region in cryo-EM (24) and by intramolecular distances 

determined from spin-labeling (15). Our HDX-MS results imply that the intermediate pre-

hydrolytic state is occluded from both the IC and EC environments simultaneously, and they 

suggest a mechanism by which both substrate entry and exit points are occluded, preventing 

temporary channel formation during transport. 

Our results provided unprecedented HDX-MS coverage of P-gp, enabling a 

comprehensive view of dynamics in three distinct conformational states. Decreased exchange in 

the NBDs reflects the NBD dimerization that occurs following nucleotide binding. The 

asymmetric perturbations at the two ICH-NBD interfaces suggest that the two pseudosymmetric 

halves of the molecule function differently from one another with regard to dynamics. However, 

similar nucleotide binding kinetics measured for wild-type and (E552Q/E1197Q) P-gp indicate 

that these perturbations do not impact overall nucleotide affinity. High dynamics of the substrate-

binding pocket in the TM domain implies conformational flexibility that likely promotes 

substrate promiscuity, while lower than expected dynamics of the linker indicate that the linker 

may possess some secondary structure.  

The most striking observation, however, was the difference in deuterium uptake of the 

ECLs between the apo, pre-hydrolytic, and outward-facing states. In the pre-hydrolytic state, the 

dynamics in this region decreased while the same region increased dynamics in the outward-

facing state when compared to apo P-gp. These findings indicate a mechanism which prevents 

the transporter from behaving as a channel during the intermediate transition between the 

inward-facing and outward-facing states. Our findings suggest that this occluded conformation 

occurs at the ATP bound pre-hydrolytic stage of transport, and they characterize P-gp as a highly 
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dynamic machine undergoing multiple correlated motions to drive substrate translocation while 

avoiding leakage. 

 

 

Chapter IV, in part, is a reprint of which the dissertation author was the principal 

researcher and author. The material appears in Nature Scientific Reports. (Kopcho, N., Chang, 

G., Komives, E.A. (2019) “Dynamics of ABC transporter P-glycoprotein in three conformational 

states” Sci. Rep. 9: 10592.)  
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A.  Introduction 

 Antibodies (Abs) are widely used in the biosciences for many purposes from imaging to 

therapeutics. Currently, the global Ab market value is projected to approach $9.5 billion by the 

year 2024 (1). Yet despite their prolific usage, Abs possess several undesirable characteristics. 

Foremost, ~90% of the mass of an Ab molecule is composed of a large immunoglobulin domain 

which does not contribute toward antigen binding and inhibits tissue penetration (2). Due to this, 

high concentrations of Abs are generally required for therapeutic efficacy. This is especially 

problematic because Abs are poorly expressed in prokaryotic systems, and production of 

adequate amounts of therapeutic Abs remains an expensive and laborious process (3). 

 The tetrameric architecture of Abs may often lead to a range of stability issues (4). The 

interface between variable domains of heavy (VH) and light (VL) monomeric chains comprises 

the antigen-binding region, with three loops from each chain contributing to the binding 

interface. This complexity may pose difficulties for Ab engineering or generation of synthetic 

libraries. One alternative is a fusion of VH and VL domains, termed the single-chain variable 

fragment (scFv). While scFvs have led to some clinical successes, they require synthetic linker 

regions and are prone to misfolding (5). Further, scFvs possess the same complex binding 

domain as full-length Abs and all the difficulties associated therewith. 

 Camelid ab fragments have recently emerged as a promising alternative to classical Abs 

(6). Camelids and some cartilaginous fish Abs share a unique single-chain domain architecture 

with compact antigen-binding variable (VHH) domains. The isolated VHH domain expresses very 

well in prokaryotic systems and is highly stable in comparison to full-length Abs and scFcvs. 

Due to its ~2 nm oblong shape, the VHH domain is commonly referred to as a nanobody (Nb). 

Nbs possess a three-loop antigen-binding region that is conducive to library generation. The Nb 



94 

 

antigen-binding region also forms a unique convex architecture, which facilitates binding to 

active sites and provides Nbs with excellent utility as enzymatic modulators (7, 8). 

 One drawback both systems share is that discovery of new Abs and Nbs typically 

requires live animal immunization. This is an expensive and time-consuming process, and 

antigen toxicity severely limits the range of molecules that may be targeted. To circumvent these 

problems, we have leveraged the prokaryotic genetic encodability of Nbs to develop an in vitro 

discovery platform which allows discovery of novel Nbs in a matter of days using only benchtop 

equipment. Our platform utilizes the rapid growth of e. coli and the high-throughput screening 

power of fluorescence activated cell sorting (FACS) to screen a diverse (>109) synthetic Nb 

library for binders against specific antigens. As a proof of concept, we generated a low nM 

affinity (28 nM) Nb against the multidrug efflux transporter P-glycoprotein (P-gp) within a 

matter of days. 

B.  Materials and Methods 

1. Protein production 

P-gp was prepared as described previously (9) and stored in buffer containing 20mM 

HEPES pH 7.5, 100 mM NaCl, 0.035% β-DDM, 0.01% sodium cholate, and 0.2 mM TCEP. 

Nb protein was purified directly from the cell surface display system. Cultures were 

grown in 1 L flasks containing lysogeny broth (LB) media supplemented with 50 µg/mL 

kanamycin at 37˚C. Cell surface displayed Nb expression was induced with addition of arabinose 

to a final concentration of 0.2% when optical density at 600 nm reached ~0.5. Cells were 

harvested by centrifugation at 5000 xg after 3 hrs of induction at 37˚C. Cell pellets were 

resuspended in 100 mL Nb purification buffer containing 25 mM HEPES pH 7.5 and 125 mM 
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NaCl. Nbs were then cleaved from the cell surface by overnight digestion with (tobacco etch 

virus) TEV protease at 4˚C under gentle stirring. 

The TEV digested solution was centrifuged at 38,000 xg for 1 hr and the supernatant was 

loaded on Strep-Tactin resin pre-equilibrated with Nb purification buffer using gravity flow. 

Resin was washed with 10x column volume of purification buffer and eluted with 2.5 mM 

desthiobiotin. Eluted protein was concentrated to ~500 µL and further purified by size exclusion 

on an Akta fast protein liquid chromatography system using superdex 200 resin. 

2. Nanobody selection 

A culture of cells displaying the Nb library was grown in LB media supplemented with 

50 µg/mL kanamycin at 37 ˚C and induced with 0.2% arabinose 0.2% when optical density 

reached ~0.5. After 3 hours of induction at 37 ˚C, library expressing cells were added to solution 

composed of P-gp storage buffer and containing 0.5 nM his-tagged P-gp, 1 nM anti-his Alexa 

Fluor-488 (Invitrogen). To account for cell permeability induced by detergent in the buffer, 

propidium iodide (PI) was added to a final concentration of 0.01%. 

The solution containing P-gp and library expressing cells was allowed to incubate for 30 

min at 4 ˚C and cells which bound to P-gp were isolated using a Bio-Rad S3e cell sorter. A 

population of e.coli was first identified by forward and side scattering, and cells within this 

population exhibiting fluorescence at 488 nm were collected in LB media. However, any cells 

displaying PI fluorescence (647 nm) were shunted into a waste container. In total, 4,060,973 

events were sorted, with 15,676 sent to waste for PI incorporation and 1,145 collected. Collected 

cells were immediately plated on LB agar supplemented with 50 ug/mL kanamycin and 

incubated overnight at 37 ˚C. 
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3. Flow cytometric validation 

 Colonies from FACS collected events were picked and grown in 96-well blocks 

overnight at 37 ˚C in LB supplemented with 50 ug/mL kanamycin. Arabinose was then added to 

a final concentration of 0.2% (m/v) and induction proceeded for 3 hours at 37 ˚C. In a separate 

96-well block, P-gp storage buffer containing 0.5 nM P-gp and 1 nM anti-his Alexa Fluor-488 

(BioLegend) was added to each well. Concentrations of P-gp and antibody were kept at least 10-

fold below concentrations at which non-specific binding to uninduced library cells was observed. 

Induced cells were then transferred to the block containing P-gp and analyzed on a Novocyte 

flow cytometer (Acea Biosciences) using the NovoExpress 1.2.5 software package. Cell 

populations with the highest fluorescence emission intensity at 530 nm were selected as 

candidates for kinetics analysis. 

4. Kinetics analysis 

 Nb-A7 was purified and biotinylated using a 1:1 molar ratio of EZ-Link NHS-biotin 

(Thermo Fisher). Analysis was then carried out using an Octet K2 (Molecular Devices) at 30 ˚C. 

Streptavidin coated biosensors were hydrated in P-gp storage buffer and then transferred to wells 

containing 1 µg/mL Nb-A7. Immobilization was monitored and allowed to proceed until the BLI 

signal reached ~0.8 nM. Biosensors were then quenched with 10 µg/mL biocytin and washed in 

buffer for 1 min. Kinetics analysis was carried out by allowing biosensors to equilibrate in P-gp 

storage buffer for baseline measurements, transferring biosensors into wells containing P-gp or 

BSA to measure on rates, and transferring them back into the baseline wells to measure off rates. 

For each measurement, reference sensors without Nb immobilized were included to correct for 

analyte protein binding to the sensors. 
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5. Epitope mapping with HDX-MS 

HDX-MS measurements were made using a Synapt G2Si system (Waters Corporation) as 

described previously (9). Deuterated buffer was prepared by lyophilizing 10 mL of 20 mM HEPES 

pH 7.5 and 100 mM NaCl. Lyophilized buffer was resuspended in 10 mL 99.96% D2O 

immediately before use, to which was added powdered β-DDM to a final concentration of 0.01%. 

Sample containing 6 µM P-gp was analyzed after 0, 0.5, 1 and 5 mins of exchange at 25˚C to 

provide a measure of apo state dynamics. A separate sample containing 6 µM P-gp and 10 µM 

Nb-A7 was analyzed at the same time points to interrogate solvent protection due to Nb binding. 

Nb-A7 (10 µM)  was added to D2O buffer to maintain equilibrium following dilution into 

deuterated buffer. H2O was added to deuterated buffer used for measurement of the apo state to 

normalize back-exchange and buffer dilution between the two states. 

C. Results 

1. Nanobody selection 

E. coli cultures displaying our Nb library were incubated with 0.5 nM P-gp, and cells 

displaying Nb bound to P-gp were isolated using FACS (Fig. 5.2A). The sorting procedure was 

completed in one afternoon with 4,060,973 events sorted and 1,415 collected for further 

interrogation. Collected events were grown overnight on LB agar and the resulting colonies were 

picked to produce monoclonal populations of Nb-displaying cells. These monoclonal populations 

were then validated for P-gp binding with flow cytometry. Nb clone A7 (Nb-A7) was selected 

for further analysis (Fig. 5.2B). 
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2. Kinetics analysis 

 Nb-A7 was purified and further validated for P-gp binding using a ForteBio Octet K2. 

The Octet K2 detects interferometric signals occurring at the surface of sensors loaded with 

immobilized protein to quantify association and dissociation rates of biomolecular interactions 

(10). Screening of individual Nb clones can be completed within minutes, and thorough kinetics 

Figure 5.1. Cell sorting. (A) FACS plots of library-

expressing cells in solution with 0.5 nM P-gp. Light 

scattering was used to identify a population of e. coli cells 

(left), and antigen binding was indicated by fluorescence 

emission intensity at 530 nM. (B) Monoclonal flow 

cytometry validation of Nb-A7. 
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analysis may be carried out within 1-2 hours. The device is thus ideal for rapid orthogonal 

validation, high throughput screening and lead ranking (11). 

Biotinylated Nb-A7 was immobilized on Octet sensors and screened for binding to 50 

nM P-gp (Fig. 5.2A). Further testing confirmed no non-specific binding to 50 nM bovine serum 

albumin (BSA). After confirming Nb-A7 as a valid P-gp binder, a dose-dependent kinetics assay 

was carried out (Fig. 5.2B). Association and dissociation rates fit a 1:1 binding model with KD = 

28 ± 0.1 nM (Table 5.1). 

 

 

 

Table 5.1. Nb-A7 and P-gp binding kinetics. 

KD (nM) kon (1/Ms) koff (1/s) R2 

28 ± 0.1 3.9 ± 0.1 E04 1.0 ± 0.05 E-03 0.97 

 

 

Figure 5.2. Nanobody binding kinetics. (A) Following 

orthogonal validation of antigen binding, affinity was 

determined by measuring binding to 1000 (black), 333 

(blue), 111 (green), 37 (orange), and 12 (red) nM P-gp. 

(B) Nb-A7 was immobilized and screened for binding 

against 50 nM P-gp (black) and 50 nM BSA (blue). 
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3. Epitope mapping  

 Hydrogen deuterium exchange mass spectrometry (HDX-MS) was used to determine the 

binding interface between Nb-A7 and P-gp. This technique is convenient for epitope mapping, 

provided the binding interaction being studied is expansive enough to occlude peptide amides 

and persistent enough to occlude solvent over timescales relevant to deuterium exchange (12-

14).  

Our experimentally determined affinity of 28 nM was deemed sufficient for HDX-MS 

and measurements were carried out on both the apo state of P-gp, and on P-gp in complex with 

Nb-A7. We obtained 79.8% P-gp sequence coverage in 79 different peptides, and differences 

between states greater than 1 Da were interpreted as significant. When comparing the two 

measured states, only 4 regions of P-gp appeared to decrease in exchange by more than 1 Da 

(Fig. 5.3). These regions corresponded to residues 6-25 along the N-terminus, residues 121-144 

on transmembrane helix 2 (TM2), residues 339-350, 340-350 on TM6 and residues 916-937, 

918-940 on TM11. Overlaying the difference in relative uptake between the two experimental 

states revealed that all 4 of these regions are in spatial proximity. 
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D.  Discussion 

Our rapid in vitro system facilitated discovery of P-gp binding Nb within a matter of 

days. Further, the affinity of Nb-A7 obtained directly from our naïve library (KD: 28 nM) was 

similar to affinities reported Nbs obtained from animal immunization (KD: 7 nM) (15). Our 

measured affinity also explains the relatively minor population shift observed during flow 

cytometry analysis (Fig. 5.1). Due to experimental constraints, flow cytometry analysis was 

carried out using 0.5 nM P-gp. Only a fraction of the monoclonal population was observed 

bound to P-gp as this concentration fell below the measured KD for this interaction.  

As Nb interactions consist of small binding epitopes mediated primarily by side-chain 

interactions (16), we were unsurprised by relatively small reductions in uptake (1-2 Da) in the 

Figure 5.3. Nanobody epitope mapping. P-gp structure is colored by the 

difference in relative exchange between apo P-gp (blue) and P-gp bound to Nb-

A7 (red). Regions not covered are colored grey, and regions with uptake 

difference less than 1 Da are colored white. The unstructured N-terminus is 

shown as a dotted line. 
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Nb-A7-bound state following HDX-MS. Interestingly, the 4 regions with reduced deuterium 

uptake in the presence of Nb-A7 are located along the outer sides of the transporter molecule 

(Fig. 5.3). This behavior indicates that binding to one side of the TM region slows nearby 

dynamic processes through allostery, although which side Nb-A7 bound to cannot be inferred 

from this dataset. Ongoing structural determination efforts will further assist in the 

characterization of this interaction. 

Nb-A7 demonstrates the utility of our platform. After a single FACS selection we 

obtained Nb specific for the antigen P-gp with low nM binding affinity suitable for epitope 

mapping using HDX-MS. Our in vitro platform allows for selection against toxic antigen targets 

that are difficult to obtain through conventional in vivo, and the selection process is limited only 

by the replication speed of e. coli. Nbs selected in this way can be readily produced by 

overexpression in prokaryotic systems and may be used for facilitating structure determination 

(17), interrogating conformational dynamics (18), targeted therapeutics (19), or any other 

application requiring specific molecular probes. 

 

 

Chapter V, in full, is material in preparation for journal submission to which the 

dissertation author was the principle researcher and author. The material will be submitted for 

publication. (Kopcho, N., Lee, C.W., Chang, G. (2020).) 
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